检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
准备数据 首先,企业A和大数据厂商B需要商议确定要提供的数据范围及对应的元数据信息,例如双方初始决定使用最近三个月的已有用户转化数据作为联邦训练的训练集和评估集。
然后勾选“选择训练作业”列表中的某一训练作业,然后勾选“选择模型”列表中对应模型,最后单击“确定”按钮完成作业创建。 参数配置完成后,单击确认,完成批量预测任务的创建。 父主题: 批量预测
因此可以通过华为TICS可信智能计算平台的横向联邦功能,实现在患者隐私不泄露的前提下,利用其他机构的医疗数据提升乳腺癌预测模型的准确率。 进一步地,可根据该模型案例发散,构建老年人健康预测、高血压预测、失能早期预警模型等。
企业A预测数据集如下: 大数据厂商B仍使用训练时的提供的全量数据作为预测数据集,没有发布新的数据集。 父主题: 使用TICS联邦预测进行新数据离线预测
DAG图显示了“psi + 同态”的全过程流向,基本符合业界已公开的PSI算法流程和同态加密流程。 图2 加密流程 图3 加密流程 父主题: 可验证代码示例
DAG图显示了“psi + 秘密分享”的全过程流向,基本符合业界已公开的PSI算法流程和秘密分享流程。 图2 加密流程 图3 加密流程 父主题: 基于TICS实现端到端的企业积分查询作业
数据预处理使用场景:训练机器学习模型前,可通过转换函数将特征数据转换成更加适合算法模型的特征数据。 父主题: 管理数据
对接AOM之后,相应的日志存储在AOM平台上,平台每月提供500M的免费空间,超出则计费。具体的计费规则参见计费概述。 节点密码 设置可信计算节点宿主机的登录密码。 确认密码 与“节点密码”保持一致即可。
TRAIN(训练),EVALUATE(评估)。 hfl_platform_type 否 String 联邦学习运行平台枚举值。
1.TRAIN训练,2.EVALUATE评估 hfl_platform_type String 联邦学习运行平台枚举值。
因此企业A希望与某大数据厂商B展开一项合作,基于双方共有的数据进行联邦建模,使用训练出的联邦模型对新数据进行联邦预测,筛选出高价值的潜在客户,再针对这些客户进行定向营销,达成提高营销效果、降低营销成本的业务诉求。
发起方获取某个横向联邦训练作业的训练结果路径。 图1 获取作业结果路径 发起方执行恶意脚本,试图篡改所获取的路径中的作业训练结果。
因此企业A希望与某大数据厂商B展开一项合作,基于双方共有的数据进行联邦建模,使用训练出的联邦模型对新数据进行联邦预测,筛选出高价值的潜在客户,再针对这些客户进行定向营销,达成提高营销效果、降低营销成本的业务诉求。
因此企业A希望与某大数据厂商B展开一项合作,基于双方共有的数据进行联邦建模,使用训练出的联邦模型对新数据进行联邦预测,筛选出高价值的潜在客户,再针对这些客户进行定向营销,达成提高营销效果、降低营销成本的业务诉求。
使用文件管理功能后,创建联邦学习作业时用户可以便捷地选择自己以前上传的执行脚本、训练模型、数据文件、权重参数文件,极大地提高了系统的易用性及可维护性。 创建文件 用户登录TICS控制台。 进入TICS控制台后,单击页面左侧“计算节点管理”,进入计算节点管理页面。
多种训练场景。 方便与已有服务对接。 使用场景 横向联邦机器学习 横向联邦机器学习,适用于参与者的数据特征重叠较多,而样本ID重叠较少的情况,联合多个参与者的具有相同特征的多行样本进行可信联邦学习,联合建模。 模型评估 评估训练得出的模型权重在某一数据集上的预测输出效果。
可信联邦学习作业 概述 创建横向训练型作业 横向联邦训练作业对接MA 创建横向评估型作业 创建纵向联邦学习作业 执行作业 查看作业计算过程和作业报告 删除作业 安全沙箱机制
训练轮数 训练的轮数,每一轮训练结束都会对各方训练出的权重进行一次安全聚合,评估型作业的轮数固定为1。 重试 开关开启后,执行失败的作业会根据配置定时进行重试,仅对开启后的执行作业生效。 开关关闭后,关闭前已触发重试的作业不受影响,仅对关闭后的执行作业生效。
模型评估 评估训练得出的模型权重在某一数据集上的预测输出效果。 纵向联邦机器学习 纵向联邦机器学习,适用于参与者训练样本ID重叠较多,而数据特征重叠较少的情况,联合多个参与者的共同样本的不同数据特征进行联邦机器学习,联合建模。
hfl_platform_type 是 String 联邦学习运行平台枚举值。