检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
/ N ,算法带宽 = 数据量 / 时间 但是这个计算公式的前提是用Ring算法,Tree算法的总线带宽不可以这么计算。 如果Tree算法算出来的总线带宽相当于是相对Ring算法的性能加速。算法计算总耗时减少了,所以用公式算出来的总线带宽也增加了。理论上Tree算法是比Ring算法
查看堆栈。py-spy工具的具体使用方法可参考py-spy官方文档。 # 找到训练进程的PID ps -ef # 查看进程12345的进程堆栈 # 如果是8卡的训练作业,一般用此命令依次去查看主进程起的对应的8个进程的堆栈情况 py-spy dump --pid 12345 父主题: 管理模型训练作业
DevServer资源。 准备代码 准备AscendSpeed训练代码、分词器Tokenizer和推理代码。 准备数据 准备训练数据,可以用本案使用的数据集,也可以使用自己准备的数据集。 准备镜像 准备训练模型适用的容器镜像。 训练 启动训练 介绍各个训练阶段:指令微调、PPO强
在代码中还需要使用AK-SK认证模式,示例代码如下。 from modelarts.session import Session # 认证用的ak和sk硬编码到代码中或者明文存储都有很大的安全风险,建议在配置文件或者环境变量中密文存放,使用时解密,确保安全; # 本示例以ak和s
set_context(device_target='Ascend');mindspore.run_check()" # 测试完需要恢复环境变量,实际跑训练业务的时候需要用到 export MS_GE_TRAIN=1 export MS_ENABLE_GE=1 图18 进入conda环境并进行测试
数据格式异常会导致训练失败,建议开启,保证训练稳定性。数据量过大时,数据清洗可能耗时较久,可自行线下清洗(支持BMP.JPEG,PNG格式, RGB三通道)。建议用JPEG格式数据")), wf.AlgorithmParameters(name="use_fp16", value=wf
数据格式异常会导致训练失败,建议开启,保证训练稳定性。数据量过大时,数据清洗可能耗时较久,可自行线下清洗(支持BMP.JPEG,PNG格式, RGB三通道)。建议用JPEG格式数据")), wf.AlgorithmParameters(name="use_fp16", value=wf
运行训练作业时,当“代码目录”下载完成后,“启动命令”会被自动执行。 如果训练启动脚本用的是py文件,例如“train.py”,则启动命令如下所示。 python ${MA_JOB_DIR}/demo-code/train.py 如果训练启动脚本用的是sh文件,例如“main.sh”,则启动命令如下所示。 bash
(必须是“迭代次数|loss|吞吐”),才能在此处正常查看吞吐和“训练LOSS”曲线。 训练LOSS 训练阶段的LOSS变化,模型在日志里用LOSS关键词记录数据,按照训练迭代周期记录LOSS值。 微调产物说明 模型微调完成后,会得到一个新模型,即微调产物。 在微调大师页面,单击
需要进入容器看日志。注意:重点对应日志中是否有ERROR(包括,容器启动时、API执行时)。 牵扯部分文件用户组不一致的情况,可以在宿主机用root权限执行命令进行修改 docker exec -u root:root 39c9ceedb1f6 bash -c "chown -R
启动服务,并按照global rank_table中的全量实例、增量实例的顺序,对全量推理实例、增量推理实例启动的端口号进行排序,端口之间用`,`分隔开作为该环境变量的输入。 USE_OPENAI:仅在服务入口实例生效,用于配置api-server服务是否使用openai服务,默
启动服务,并按照global rank_table中的全量实例、增量实例的顺序,对全量推理实例、增量推理实例启动的端口号进行排序,端口之间用`,`分隔开作为该环境变量的输入。 USE_OPENAI:仅在服务入口实例生效,用于配置api-server服务是否使用openai服务,默
需要进入容器看日志。注意:重点对应日志中是否有ERROR(包括,容器启动时、API执行时)。 牵扯部分文件用户组不一致的情况,可以在宿主机用root权限执行命令进行修改 docker exec -u root:root 39c9ceedb1f6 bash -c "chown -R
assistant_ids input_ids是user_ids和assistant_ids的拼接 labels与input_ids对应,用-100替换user_ids的token,只保留assistant_ids attention_mask是和input_ids等长的全1序列
assistant_ids input_ids是user_ids和assistant_ids的拼接 labels与input_ids对应,用-100替换user_ids的token,只保留assistant_ids attention_mask是和input_ids等长的全1序列
ServiceConfig() # 主要在服务部署节点的输出中使用 如果您没有特殊需求,可直接使用内置的默认值。 使用案例 主要包含三种场景的用例: 新增在线服务 更新在线服务 服务部署输出推理地址 新增在线服务 import modelarts.workflow as wf # 通
数据格式异常会导致训练失败,建议开启,保证训练稳定性。数据量过大时,数据清洗可能耗时较久,可自行线下清洗(支持BMP.JPEG,PNG格式, RGB三通道)。建议用JPEG格式数据")), wf.AlgorithmParameters(name="use_fp16", value=wf
运行训练作业时,当“代码目录”下载完成后,“启动命令”会被自动执行。 如果训练启动脚本用的是py文件,例如“train.py”,则启动命令如下所示。 python ${MA_JOB_DIR}/demo-code/train.py 如果训练启动脚本用的是sh文件,例如“main.sh”,则启动命令如下所示。 bash
45--data_demo” ENV_AG_USER_PARAMS 配置的训练超参json字符串。创建训练任务时在算法配置页面设置的超参,用json字符串表示。 {"per_device_eval_batch_size":"32","lr":"0.001","logging_steps":"24"}
获取训练吞吐数据:在打印的loss日志中搜索关键字段“elapsed time per iteration”获取每步迭代耗时,总的Token数可以用日志中的“global batch size”和“SEQ_LEN”相乘获得,训练的每卡每秒的吞吐=总Token数÷每步迭代耗时÷总卡数。 删除调优任务