检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
根据报错日志分析,模型目录下存在多余文件“/home/mind/model/v0432/cdn_short.pt”。 处理方法 在模型目录中删除“/home/mind/model/v0432/cdn_short.pt”文件,重新导入模型后进行部署在线服务即可正常预测。 父主题: 服务部署
在Notebook中,如何使用昇腾多卡进行调试? 昇腾多卡训练任务是多进程多卡模式,跑几卡需要起几个python进程。昇腾底层会读取环境变量:RANK_TABLE_FILE,开发环境已经设置,用户无需关注。比如跑八卡,可以如下片段代码: export RANK_SIZE=8 curr
什么是训练作业优先级 在用户运行训练作业过程中,有需要对训练任务(也叫训练作业)做优先级划分。比如有一些任务是低优先级,可能是跑一些测试、也可能是跑一些简单的不重要的实验。在这类场景下,当有高优先级任务的时候,需要能比低优先级任务更快进入排队队列。 在资源使用高峰期,用户可以通
with error code 0” 问题现象 pytroch1.3镜像中,去升级了pytroch1.4的版本,导致之前在pytroch1.3跑通的代码报错如下: “RuntimeError:max_pool2d_with_indices_out_cuda_frame failed with
运行训练作业时,当“代码目录”下载完成后,“启动命令”会被自动执行。 如果训练启动脚本用的是py文件,例如“train.py”,则启动命令如下所示。 python ${MA_JOB_DIR}/demo-code/train.py 如果训练启动脚本用的是sh文件,例如“main.sh”,则启动命令如下所示。 bash
AI应用的自定义镜像制作流程 如果您使用了ModelArts不支持的AI引擎开发模型,也可通过制作自定义镜像,导入ModelArts创建为AI应用,并支持进行统一管理和部署为服务。 制作流程 场景一: 预置镜像的环境软件满足要求,只需要导入模型包,就能用于创建AI应用,通过镜像保
keyword argument passed to optimizer” 问题现象 在使用keras时,升级版本>=2.3.0之后,之前跑通的代码出现如下报错: TypeError: Unexpected keyword argument passed to optimizer:
训练作业的自定义镜像制作流程 如果您已经在本地完成模型开发或训练脚本的开发,且您使用的AI引擎是ModelArts不支持的框架。您可以制作自定义镜像,并上传至SWR服务。您可以在ModelArts使用此自定义镜像创建训练作业,使用ModelArts提供的资源训练模型。 制作流程 图1
使用预置镜像制作自定义镜像用于训练模型 使用预置框架构建自定义镜像原理介绍 如果先前基于预置框架且通过指定代码目录和启动文件的方式来创建的训练作业;但是随着业务逻辑的逐渐复杂,您期望可以基于预置框架修改或增加一些软件依赖的时候,可以使用预置框架构建自定义镜像,即在创建训练作业页面
从0制作自定义镜像用于创建训练作业(PyTorch+CPU/GPU) 本章节介绍如何从0到1制作镜像,并使用该镜像在ModelArts平台上进行训练。镜像中使用的AI引擎是PyTorch,训练使用的资源是CPU或GPU。 本实践教程仅适用于新版训练作业。 场景描述 本示例使用Linux
从0制作自定义镜像用于创建训练作业(MindSpore+Ascend) 本案例介绍如何从0到1制作Ascend容器镜像,并使用该镜像在ModelArts平台上进行训练。镜像中使用的AI引擎是MindSpore,训练使用的资源是专属资源池的Ascend芯片。 场景描述 目标:构建安
从0制作自定义镜像用于创建训练作业(MPI+CPU/GPU) 本章节介绍如何从0到1制作镜像,并使用该镜像在ModelArts平台上进行训练。镜像中使用的AI引擎是MPI,训练使用的资源是CPU或GPU。 本实践教程仅适用于新版训练作业。 场景描述 本示例使用Linux x86_
自动学习使用子账号单击开始训练出现错误Modelarts.0010 用主账号给子账号配置ModelArts所使用的OBS桶的ACL权限即可。 父主题: 模型训练
未知系统问题导致,建议先尝试重建作业,重建后仍然失败,建议提工单定位。 处理方法 如果存在之前能跑通,什么都没修改,过了一阵跑不通的情况,先去排查跑通和跑不通的日志是否存在pip源更新了依赖包,如下图,安装之前跑通的老版本即可。 图1 PIP安装对比图 推荐您使用本地Pycharm远程连接Notebook调试。
对同一个算法复杂化。例如回归模型添加更多的高次项,增加决策树的深度,增加神经网络的隐藏层数和隐藏单元数等。 弃用原来的算法,使用一个更加复杂的算法或模型。例如用神经网络来替代线性回归,用随机森林来代替决策树。 增加更多的特征,使输入数据具有更强的表达能力。 特征挖掘十分重要,尤其是具有强
如果需要创建专属资源池,建议等待5min后再创建,且不要使用已创建过的专属资源池名称来命名新建的专属资源池。如果做UI自动化测试,建议用例用随机串替代。 父主题: Standard资源池
是否支持Keras引擎? 开发环境中的Notebook支持。训练作业和模型部署(即推理)暂时不支持。 Keras是一个用Python编写的高级神经网络API,它能够以TensorFlow、CNTK或者Theano作为后端运行。Notebook开发环境支持“tf.keras”。 如何查看Keras版本
在Notebook中添加自定义IPython Kernel 使用场景 当前Notebook默认内置的引擎环境不能满足用户诉求,用户可以新建一个conda env按需搭建自己的环境。本小节以搭建一个“python3.6.5和tensorflow1.2.0”的IPython Kernel为例进行展示。
创建训练任务之前,建议先调试代码。 由于Notebook的/cache目录只能支持500G的存储,超过后会导致实例重启,ImageNet数据集大小超过该限制,因此建议用线下资源调试、或用小批量数据集在Notebook调试(Notebook调试方法与使用Notebook进行代码调试、使用Notebook进行代码调试相同)。
【下线公告】华为云ModelArts服务旧版数据集下线公告 华为云计划于2024/10/31 00:00(北京时间)用AI开发平台ModelArts的新版数据集全面替代旧版数据集,旧版数据集正式下线。 下线范围 下线区域:华北-北京四(其他区域已下线) 受影响服务 ModelArts旧版数据集。