检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
评估标准创建完成后可以在“人工评估标准”页面查看创建的评估标准,并支持编辑与删除操作。 创建图片类数据集评估任务 平台仅支持对“加工数据集”执行评估操作。 创建图片类数据集评估任务前,请参考加工图片类数据集,生成一个“加工数据集”。 创建图片类数据集评估任务步骤如下: 登录ModelArts Studio大模型开
提示词评估 提示词评估以任务维度管理,支持评估任务的创建、查询、修改、删除。支持创建评估任务,选择候选提示词和需要使用的变量数据集,设置评估算法,执行任务自动化对候选提示词生成结果和结果评估。 提示词管理 提示词管理支持用户对满意的候选提示词进行保存管理,同时支持提示词的查询、删除。
填写数据集名称、描述,设置数据集“资产可见性”,设置扩展信息后,单击“确定”执行数据集流通操作。 当任务状态显示为“运行成功”时,说明数据流通任务执行成功,生成的“发布数据集”可在“数据工程 > 数据发布 > 发布数据集”中查看。 父主题: 发布图片类数据集
合。请检查训练参数中的 “训练轮次”或“学习率”等参数的设置,适当降低这些参数的值,降低过拟合的风险。 数据质量:请检查训练数据的质量,若训练样本出现了大量重复数据,或者数据多样性很差,则会加剧该现象。 父主题: 大模型微调训练类问题
它从未标记的数据中提取监督信号,属于无监督学习的一个子集。该方法通过创建“预设任务”让模型从数据中学习,从而生成有用的表示,可用于后续任务。它无需额外的人工标签数据,因为监督信号直接从数据本身派生。 有监督学习 有监督学习是机器学习任务的一种。它从有标记的训练数据中推导出预测函
型。增量预训练旨在使模型能够适应新的领域或数据需求,保持其长期的有效性和准确性。 微调阶段:基于预训练的成果,微调阶段通过在特定领域的数据集上进一步训练,使模型能够更有效地应对具体的任务需求。这一阶段使模型能够精确执行如文案生成、代码生成和专业问答等特定场景中的任务。在微调过程中
文本-单轮问答-jsonl格式 上传数据文件后,填写“数据集名称”与“描述”,单击“立即创建”。 在左侧导航栏中选择“数据工程 > 数据发布 > 数据流通”,单击界面右上角“创建流通任务”。 在“创建流通任务”页面选择数据集模态并选择数据集文件。 单击“下一步”,选择发布格式,填写名称,选择数据集可见性,单击“下一步”。
评测得分 每个数据集上的得分为模型在当前数据集上的通过率;评测能力项中若有多个数据集则按照数据量的大小计算通过率的加权平均数。 综合能力 综合能力是计算所有数据集通过率的加权平均数。 表3 NLP大模型人工评测指标说明 评测指标(人工评测) 指标说明 准确性 模型生成答案正确且无事实性错误。
证。 AK(Access Key ID):访问密钥ID。与私有访问密钥关联的唯一标识符;访问密钥ID和私有访问密钥一起使用,对请求进行加密签名。 SK(Secret Access Key):与访问密钥ID结合使用的密钥,对请求进行加密签名,可标识发送方,并防止请求被修改。 使用A
并单击“创建评估”。 图1 创建评估 选择评估使用的变量数据集和评估方法。 评估用例集:根据选择的数据集,将待评估的提示词和数据集中的变量自动组装成完整的提示词,输入模型生成结果。 评估方法:根据选择的评估方法,对模型生成结果和预期结果进行比较,并根据算法给出相应的得分。 图2 创建提示词评估任务
jpg”,那么标注文件的文件名应为“IMG_2.xml” 图片支持jpg、jpeg、png、bmp格式,标注文件为xml格式,标注文件说明请参见物体检测数据集标注文件说明。 单个文件大小不超过50GB,文件数量最多1000个。 图像分类 图片+txt 由图片文件和对应的标注文件构成,要求
如何分析大模型输出错误回答的根因 大模型的输出过程通常是一个黑盒,涉及数以亿计甚至千亿计的参数计算,虽然这些参数共同作用生成输出,但具体的决策机制并不透明。 可以通过在提示词中引导模型输出思考过程,或者在模型输出后追问模型,帮助我们分析错误的根因。例如: “我注意到你犯了xxx的错误,请解释得出该结论的原因。”
获取提示词模板 平台提供了多种任务场景的提示词模板,可以帮助用户更好地利用大模型的能力,引导模型生成更准确、更有针对性的输出,从而提高模型在特定任务上的性能。 在创建提示词工程前,可以先使用预置的提示词模板,或基于提示词模板进行改造 。如果提示词模板满足不了使用需求可再单独创建。
型学习。 这里提供了一些将无监督数据转换为有监督数据的方案,供您参考: 基于规则构建:您可以通过采用一些简单的规则来构建有监督数据。比如: 表1 采用规则将无监督数据构建为有监督数据的常用方法 规则场景 说明 文本生成:根据标题、关键词、简介生成段落。 若您的无监督文档中含标题、
在“预览调试”的左下角,选择是否开启“代码解释器”。 如果开启,应用将支持生成并运行Python代码来解决用户数据处理和分析、数据可视化、数学计算等方面的需求。 如果关闭,应用将不具备生成、运行代码的能力。 在右侧“预览调试”的文本框中输入对话,应用将根据对话生成相应的回答。 应用调试成功后,可执行后续的调用操作调用应用。
登录“我的凭证 > 访问密钥”页面,依据界面操作指引获取Access Key(AK)和Secret Access Key(SK)。下载的访问密钥为credentials.csv文件,包含AK/SK信息。 认证用的ak和sk硬编码到代码中或者明文存储都有很大的安全风险,建议在配置文件或者环境变量中密文存放,使用时解密,确保安全。
用于存放模型推理结果的OBS路径。 输入数据 支持选择用于存放作为初始场数据的文件路径。 预报天数 支持选择以起报时间点为开始,对天气要素或降水进行预报的天数,范围为1~14天。 起报时间 支持选择多个起报时间作为推理作业的开始时间,每个起报时间需为输入数据中存在的时间点。 表面变量 支持选择推理结果输出的表面变量,包括10m
示工程是指在不更新模型参数的前提下,通过设计和优化提示词的方式,引导大模型生成目标结果的方法。 为什么需要提示工程 模型生成结果优劣取决于模型能力及提示词质量。其中模型能力的更新需要准备大量的数据及消耗大量的计算资源,而通过提示工程,可以在不对模型能力进行更新的前提下,有效激发模型能力。
ModelArts Studio大模型开发平台提供了模型开发功能,涵盖了从模型训练到模型调用的各个环节。平台支持全流程的模型生命周期管理,确保从数据准备到模型部署的每一个环节都能高效、精确地执行,为实际应用提供强大的智能支持。 模型训练:在模型开发的第一步,ModelArts S
而大模型则能够理解问题的上下文,结合多个搜索结果生成简洁的答案,或提供更详细的解释,从而进一步改善用户的搜索体验。 温度 用于控制生成文本的多样性和创造力。调高温度会使得模型的输出更多样性和创新性。 默认值:0 核采样 控制生成文本多样性和质量。调高核采样可以使输出结果更加多样化。