检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
从0-1制作自定义镜像并创建模型 针对ModelArts目前不支持的AI引擎,您可以针对该引擎构建自定义镜像,并将镜像导入ModelArts,创建为模型。本文详细介绍如何使用自定义镜像完成模型的创建,并部署成在线服务。 操作流程如下: 本地构建镜像:在本地制作自定义镜像包,镜像包
在ECS中通过Dockerfile从0制作自定义镜像用于推理 针对ModelArts目前不支持的AI引擎,您可以针对该引擎构建自定义镜像,并将镜像导入ModelArts,创建为模型。本文详细介绍如何使用自定义镜像完成模型的创建,并部署成在线服务。 操作流程如下: 本地构建镜像:在
Yolov8基于Lite Server适配MindSpore Lite推理指导(6.3.909) 方案概览 本方案介绍了在ModelArts的Lite Server上使用昇腾Atlas 300I Duo推理卡计算资源,部署Yolov8 Detection模型推理的详细过程。 本方案目前仅适用于企业客户。
SD1.5基于Lite Server适配PyTorch NPU Finetune训练指导(6.3.904) Stable Diffusion(简称SD)是一种基于Latent Diffusion(潜在扩散)模型,应用于文生图场景。对于输入的文字,它将会通过一个文本编码器将其转换为
从0制作自定义镜像用于创建训练作业(PyTorch+CPU/GPU) 本章节介绍如何从0到1制作镜像,并使用该镜像在ModelArts平台上进行训练。镜像中使用的AI引擎是PyTorch,训练使用的资源是CPU或GPU。 本实践教程仅适用于新版训练作业。 场景描述 本示例使用Linux
SDXL基于Lite Server适配PyTorch NPU的Finetune训练指导(6.3.905) Stable Diffusion(简称SD)是一种基于扩散过程的图像生成模型,应用于文生图场景,能够帮助用户生成图像。SDXL Finetune是指在已经训练好的SDXL模型
部署推理服务 本章节介绍如何使用vLLM 0.4.2框架部署并启动推理服务。 前提条件 已准备好Server环境,具体参考资源规格要求。推荐使用“西南-贵阳一”Region上的Server和昇腾Snt9b资源。 安装过程需要连接互联网git clone,确保容器可以访问公网。 Step1
示例:从 0 到 1 制作自定义镜像并用于训练(PyTorch+CPU/GPU) 本章节介绍如何从0到1制作镜像,并使用该镜像在ModelArts平台上进行训练。镜像中使用的AI引擎是PyTorch,训练使用的资源是CPU或GPU。 本实践教程仅适用于新版训练作业。 场景描述 本示例使用Linux
使用MoXing复制数据报错 问题现象 调用moxing.file.copy_parallel()将文件从开发环境的OBS桶中复制到其他OBS桶里,但是桶内没有出现目标文件。 使用MoXing复制数据不成功,出现报错。如: ModelArts开发环境使用MoXing复制OBS数据报错:keyError:
moondream2基于Lite Server适配PyTorch NPU推理指导 方案概览 本文档从模型部署的环境配置、模型转换、模型推理等方面进行介绍moondream2模型在ModelArts Lite Server上部署,支持NPU推理场景。 本方案目前仅适用于部分企业客户
离线训练安装包准备说明 在华为公有云平台,申请的资源一般要求连通网络。因此用户在准备环境时可以运行 scripts/install.sh 直接下载安装资源,或通过 Dockerfile 下载安装资源并构建一个新的镜像。 若用户的机器或资源池无法连通网络,并无法git clone下
ECS中构建新镜像 通过ECS获取和上传基础镜像获取基础镜像后,可通过ECS运行Dockerfile文件,在镜像的基础上构建新镜像。 Step1 构建新ModelArts Standard训练镜像 获取模型软件包,并上传到ECS的目录下(可自定义路径),获取地址参考表1。 解压A
从0制作自定义镜像用于创建训练作业(MindSpore+Ascend) 本案例介绍如何从0到1制作Ascend容器镜像,并使用该镜像在ModelArts平台上进行训练。镜像中使用的AI引擎是MindSpore,训练使用的资源是专属资源池的Ascend芯片。 场景描述 目标:构建安
准备镜像 准备大模型推理适用的容器镜像,包括获取镜像地址,了解镜像中包含的各类固件版本,配置Standard物理机环境操作。 镜像版本 本教程中用到基础镜像地址和配套版本关系如下表所示,请提前了解。 表1 基础容器镜像地址 镜像用途 镜像地址 配套版本 基础镜像 swr.cn-southwest-2
从0制作自定义镜像用于创建训练作业(Tensorflow+GPU) 本章节介绍如何从0到1制作镜像,并使用该镜像在ModelArts平台上进行训练。镜像中使用的AI引擎是Tensorflow,训练使用的资源是GPU。 本实践教程仅适用于新版训练作业。 场景描述 本示例使用Linux
Open-Sora1.2基于Lite Server适配PyTorch NPU训练推理指导(6.3.910) 本文档主要介绍如何在ModelArts Lite Server上,使用PyTorch_npu+华为自研Ascend Snt9B硬件,完成Open-Sora 1.2 训练和推理。
LLaVA-NeXT基于Lite Server适配PyTorch NPU训练微调指导(6.3.912) 方案概览 本方案介绍了在ModelArts Lite Server上使用昇腾计算资源Ascend Snt9B开展LLaVA-NeXT模型的训练过程,包括pretrain_cli
更新Notebook实例 功能介绍 该接口用于更新Notebook实例,包括名称、描述信息、规格、镜像ID,该接口仅可以在Notebook实例停止状态下使用。 接口约束 暂无约束 调试 您可以在API Explorer中调试该接口,支持自动认证鉴权。API Explorer可以自
在推理生产环境中部署推理服务 本章节介绍如何在ModelArts的推理生产环境(ModelArts控制台的在线服务功能)中部署推理服务。 Step1 准备模型文件和权重文件 在OBS桶中,创建文件夹,准备模型权重文件、推理启动脚本run_vllm.sh及SSL证书。此处以chatglm3-6b为例。
Qwen-VL基于Lite Server适配PyTorch NPU的Finetune训练指导(6.3.912) Qwen-VL是规模视觉语言模型,可以以图像、文本、检测框作为输入,并以文本和检测框作为输出。具有强大的性能、多语言对话、多图交错对话、支持中文开放域定位、细粒度识别和理解等特点。