检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
2:自动学习,物体检测。 3:自动学习,预测分析。 请求消息 无请求参数。 响应消息 响应参数如表3所示。 表3 响应参数 参数 参数类型 说明 is_success Boolean 请求是否成功。 error_message String 调用失败时的错误信息。
“1” 表8 卡死检测相关环境变量 变量名 说明 示例 MA_HANG_DETECT_TIME 卡死检测时间。在这段时间内IO无变化则判定为任务卡死。
@modelarts:default_shape String 内置属性:物体检测标签的默认形状(物体检测标签专用属性),默认为空。可选值如下: bndbox:矩形。 polygon:多边形。 circle:圆形。 line:直线。 dashed:虚线。 point:点。
仅图片(物体检测、图像分类、图像分割)、音频(声音分类)、文本(文本分类)类型的标注任务支持导入已标注数据。 数据集输出位置 选择数据集输出位置的OBS路径,此位置会存放输出的标注信息等文件。
@modelarts:default_shape String 内置属性:物体检测标签的默认形状(物体检测标签专用属性),默认为空。可选值如下: bndbox:矩形。 polygon:多边形。 circle:圆形。 line:直线。 dashed:虚线。 point:点。
本文档详细介绍如何通过APIG SDK访问在线服务,具体操作流程如下: 获取AK/SK 获取在线服务信息 发送预测请求 方式一:使用Python语言发送预测请求 方式二:使用Java语言发送预测请求 AK/SK签名认证方式,仅支持Body体12M以内,12M以上的请求,需使用Token
说明:只有当样本的标签列表包含物体检测标签时,此字段必选。
@modelarts:feature 否 Object 物体检测标签专用内置属性:形状特征,类型为List。以图片的左上角为坐标原点[0, 0],每个坐标点的表示方法为[x, y],x表示横坐标,y表示纵坐标(x和y均>=0)。
训练环境预检测失败、或者训练容器硬件检测故障、或者训练作业失败时会自动重新下发并运行训练作业。 PyTorch版reload ckpt PyTorch模型保存有两种方式。
使用BMS Go SDK的方式切换操作系统 以下为BMS使用Go语言通过SDK方式切换操作系统的示例代码。
可以高效地训练大规模的语言模型。 Megatron-LM是一个用于大规模语言建模的模型。它基于GPT(Generative Pre-trained Transformer)架构,这是一种基于自注意力机制的神经网络模型,广泛用于自然语言处理任务,如文本生成、机器翻译和对话系统等。
方式三:使用Python语言发送预测请求。 方式四:使用Java语言发送预测请求。 约束限制 调用API访问在线服务时,对预测请求体大小和预测时间有限制: 请求体的大小不超过12MB,超过后请求会被拦截。 因APIG(API网关)限制,平台每次请求预测的时间不超过40秒。
在基础设置中设置“许可证”、“语言”、“框架”、“任务类型”和“硬件资源”等信息。 单击“确定”。 编辑设置 基本设置 单击右侧的,可以更改Notebook名称和描述。 编辑完成之后单击“确定”。
当前自动学习支持快速创建图像分类、物体检测、预测分析、声音分类和文本分类模型的定制化开发。可广泛应用在工业、零售安防等领域。 图像分类:识别图片中物体的类别。 物体检测:识别出图片中每个物体的位置和类别。 预测分析:对结构化数据做出分类或数值预测。
@modelarts:feature Object 物体检测标签专用内置属性:形状特征,类型为List。以图片的左上角为坐标原点[0, 0],每个坐标点的表示方法为[x, y],x表示横坐标,y表示纵坐标(x和y均>=0)。
单击“预测”进行测试,预测完成后,右侧“预测结果”区域输出标签名称“sunflowers”和检测的评分。如模型准确率不满足预期,可在“数据标注”页签中添加图片并进行标注,重新进行模型训练及模型部署。预测结果中的参数说明请参见表1。
图1 获取URL 使用图形界面的软件、curl命令、Python语言等多种方式访问在线服务。可参考通过Token认证的方式访问在线服务。 父主题: 访问在线服务支持的访问通道
对AI有使用诉求的企业、NLP领域开发者,可以借助这个库,便捷地使用昇腾算力进行自然语言理解(NLU)和自然语言生成(NLG)任务的SOTA模型开发与应用。 支持的模型结构框架 AI Gallery的Transformers库支持的开源模型结构框架如表1所示。
当用户将大语言模型或者其他类型深度神经网络的训练从GPU迁移到昇腾AI处理器时,可能出现以下不同现象的模型精度问题。一般包括: Loss曲线与CPU/GPU差异不符合预期。 验证准确度与CPU/GPU差异不符合预期。
LLM大语言模型场景,在GPU下通常会使用vLLM等大模型推理框架,因此迁移到昇腾时,推荐使用PyTorch + ascend-vllm技术路线进行迁移。