检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
图1 图像分类 物体检测是计算机视觉中的经典问题之一,其任务是用框去标出图像中物体的位置,并给出物体的类别。通常在一张图包含多个物体的情况下,定制识别出每个物体的位置、数量、名称,适合图片中有多个主体的场景,针对下图检测出图片包含树和汽车。 图2 物体检测 父主题: 功能咨询
语言模型推理性能测试 benchmark方法介绍 性能benchmark包括两部分。 静态性能测试:评估在固定输入、固定输出和固定并发下,模型的吞吐与首token延迟。该方式实现简单,能比较清楚的看出模型的性能和输入输出长度、以及并发的关系。
语言模型推理性能测试 benchmark方法介绍 性能benchmark包括两部分。 静态性能测试:评估在固定输入、固定输出和固定并发下,模型的吞吐与首token延迟。该方式实现简单,能比较清楚的看出模型的性能和输入输出长度、以及并发的关系。
语言模型推理性能测试 benchmark方法介绍 性能benchmark包括两部分。 静态性能测试:评估在固定输入、固定输出和固定并发下,模型的吞吐与首token延迟。该方式实现简单,能比较清楚的看出模型的性能和输入输出长度、以及并发的关系。
图2 数据标注节点报错 步骤三:创建自动学习物体检测项目 确保数据集创建完成且可正常使用后,在ModelArts控制台,左侧导航栏选择“自动学习”默认进入新版自动学习页面,选择物体检测项目,单击“创建项目”。 进入“创建物体检测”页面后,填写相关参数。 计费模式:默认按需计费。
标注物体检测数据 物体检测之前,首先需考虑如何设计标签,标签设计需要对应所检测图片的明显特征,并且选择的标签比较容易识别(画面主体物与背景区分度较高),每个标签就是对所检测图片期望识别的全部结果。
父主题: 使用自动学习实现物体检测
父主题: 使用自动学习实现物体检测
父主题: 使用自动学习实现物体检测
支持图片、文本、语音、视频等多种数据类型,涵盖图像分类、目标检测、音频分割、文本分类等多个标注场景,适用于计算机视觉、自然语言处理、音视频分析等AI项目场景。 ModelArts Standard数据管理模块重构中,当前能力不做演进,将结合大模型时代能力进行全新升级,敬请期待。
父主题: 使用自动学习实现物体检测
LLM大语言模型训练推理 在ModelArts Studio基于Qwen2-7B模型实现新闻自动分类 主流开源大模型基于Server适配PyTorch NPU推理指导(6.3.911) 主流开源大模型基于Standard适配PyTorch NPU推理指导(6.3.911) 主流开源大模型基于
使用自动学习实现物体检测 准备物体检测数据 创建物体检测项目 标注物体检测数据 训练物体检测模型 部署物体检测服务 父主题: 使用自动学习实现零代码AI开发
约束限制 卡死检测仅支持资源类型为GPU和NPU的训练作业。 操作步骤 卡死检测无需额外配置,作业运行中会自动执行检测。检测到作业卡死后会在训练作业详情页提示作业疑似卡死。如需检测到卡死后发送通知(短信、邮件等)请在作业创建页面配置事件通知。
物体检测标注时,支持叠加框吗? 支持。 “物体检测”类型的数据集,在标注时,可在一张图片中添加多个标注框以及标签。需注意的是,标注框不能超过图片边缘。 父主题: Standard数据管理
Qwen-VL基于DevServer适配PyTorch NPU的Finetune训练指导(6.3.910) Qwen-VL是规模视觉语言模型,可以以图像、文本、检测框作为输入,并以文本和检测框作为输出。
Qwen-VL基于DevServer适配Pytorch NPU的推理指导(6.3.909) Qwen-VL是规模视觉语言模型,可以以图像、文本、检测框作为输入,并以文本和检测框作为输出。具有强大的性能、多语言对话、多图交错对话、支持中文开放域定位、细粒度识别和理解等特点。
通过Function Calling扩展大语言模型对外部环境的理解 本示例将展示如何定义一个获取送货日期的函数,并通过LLM来调用外部API来获取外部信息。 操作步骤 设置Maas的api key和模型服务地址。
通过Function Calling扩展大语言模型交互能力 Function Calling介绍 在Dify中配置支持Function Calling的模型使用 通过Function Calling扩展大语言模型对外部环境的理解
父主题: 通过Function Calling扩展大语言模型交互能力