检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
LLM/AIGC/数字人基于Server适配NPU的训练推理指导 ModelArts提供了丰富的关于Server使用NPU进行训练推理的案例指导,涵盖了LLM大语言模型、AIGC文生图、数字人等主流应用场景。您可单击链接,即可跳转至相应文档查看详细指导。 LLM大语言模型 主流开源大模型基于
图4 创建与调试客服机器人 将客服机器人嵌入网页前端页面。 在Dify平台中完成客服机器人的创建与调试后,单击“发布”,选择“嵌入网站”。 选择嵌入方式。
数字人模型训练推理 Wav2Lip推理基于Lite Server适配PyTorch NPU推理指导(6.3.907) Wav2Lip训练基于Lite Server适配PyTorch NPU训练指导(6.3.907)
大模型 支持三方开源大模型,实现智能回答、聊天机器人、自动摘要、机器翻译、文本分类等任务。 AIGC 提供AIGC场景化解决方案,辅助创作文案、图像、音视频等数字内容。 自动驾驶 实现车辆自主感知环境、规划路径和控制行驶。
使用GPTQ量化 当前版本使用GPTQ量化仅支持W8A16 perchannel的量化形式,使用W8A16的量化不仅可以保证精度在可接受的范围内,同时也有一定的性能收益。 GPTQ W8A16量化支持的模型请参见表1。 本章节介绍如何在GPU的机器上使用开源GPTQ量化工具GPTQ
使用GPTQ量化 当前版本使用GPTQ量化仅支持W8A16 perchannel的量化形式,使用W8A16的量化不仅可以保证精度在可接受的范围内,同时也有一定的性能收益。 GPTQ W8A16量化支持的模型请参见表3。 本章节介绍如何在GPU的机器上使用开源GPTQ量化工具GPTQ
什么是Workflow MLOps简介 在介绍Workflow之前,先了解MLOps的概念。 MLOps(Machine Learning Operation)是“机器学习”(Machine Learning)和“DevOps”(Development and Operations
我是有问必答知识渊博的智能问答机器人,有问题欢迎随时求助哦! 社区求助 华为云社区是华为云用户的聚集地。这里有来自ModelArts服务的技术牛人,为您解决技术难题。
离线训练安装包准备说明 申请的模型软件包一般依赖连通网络的环境。若用户的机器或资源池无法连通网络,并无法git clone下载代码、安装python依赖包的情况下,用户则需要找到已联网的机器(本章节以Linux系统机器为例)提前下载资源,以实现离线安装。用户可遵循以下步骤操作。 步骤一
离线训练安装包准备说明 在华为公有云平台,申请的资源一般要求连通网络。因此用户在准备环境时可以运行 scripts/install.sh 直接下载安装资源,或通过 Dockerfile 下载安装资源并构建一个新的镜像。 若用户的机器或资源池无法连通网络,并无法git clone下载代码
使用llm-compressor工具量化 当前版本使用llm-compressor工具量化仅支持Deepseek-v2系列模型的W8A8量化。 本章节介绍如何在GPU的机器上使用开源量化工具llm-compressor量化模型权重,然后在NPU的机器上实现推理量化。 具体操作如下:
使用llm-compressor工具量化 当前版本使用llm-compressor工具量化仅支持Deepseek-v2系列模型的W8A8量化。 本章节介绍如何在GPU的机器上使用开源量化工具llm-compressor量化模型权重,然后在NPU的机器上实现推理量化。 具体操作如下:
使用llm-compressor工具量化 当前版本使用llm-compressor工具量化仅支持Deepseek-v2系列模型的W8A8量化。 本章节介绍如何在GPU的机器上使用开源量化工具llm-compressor量化模型权重,然后在NPU的机器上实现推理量化。 具体操作如下:
Wav2Lip推理基于Lite Server适配PyTorch NPU推理指导(6.3.907) Wav2Lip是一种基于对抗生成网络的由语音驱动的人脸说话视频生成模型。主要应用于数字人场景。不仅可以基于静态图像来输出与目标语音匹配的唇形同步视频,还可以直接将动态的视频进行唇形转换
上传镜像 操作场景 客户端上传镜像,是指在安装了容器引擎客户端的机器上使用docker命令将镜像上传到容器镜像服务的镜像仓库。 如果容器引擎客户端机器为云上的ECS或CCE节点,根据机器所在区域有两种网络链路可以选择: 如果机器与容器镜像仓库在同一区域,则上传镜像走内网链路。 如果机器与容器镜像仓库不在同一区域
Wav2Lip训练基于Lite Server适配PyTorch NPU训练指导(6.3.907) 本文档主要介绍如何在ModelArts Lite的Lite Server环境中,使用NPU卡训练Wav2Lip模型。本文档中提供的Wav2Lip模型,是在原生Wav2Lip代码基础上适配后的模型
准备镜像环境 Step1 检查环境 请参考Lite Server资源开通,购买Lite Server资源,并确保机器已开通,密码已获取,能通过SSH登录,不同机器之间网络互通。 购买Lite Server资源时如果无可选资源规格,需要联系华为云技术支持申请开通。 当容器需要提供服务给多个用户
准备镜像环境 Step1 检查环境 请参考Lite Server资源开通,购买Lite Server资源,并确保机器已开通,密码已获取,能通过SSH登录,不同机器之间网络互通。 购买Lite Server资源时如果无可选资源规格,需要联系华为云技术支持申请开通。 当容器需要提供服务给多个用户
版本说明和要求 资源规格要求 本文档中的模型运行环境是ModelArts Lite的弹性节点Server。推荐使用“西南-贵阳一”Region上的资源和Ascend Snt9B。 请参考Lite Server资源开通,购买Lite Server资源,并确保机器已开通,密码已获取,能通过
版本说明和要求 资源规格要求 本文档中的模型运行环境是ModelArts Lite的弹性节点Server。推荐使用“西南-贵阳一”Region上的资源和Ascend Snt9B。 请参考Lite Server资源开通,购买Lite Server资源,并确保机器已开通,密码已获取,能通过