检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
ECS获取和上传基础镜像 Step1 创建镜像组织 在SWR服务页面创建镜像组织。 图1 创建镜像组织 Step2 登录ECS服务器 根据创建ECS服务器创建完成ECS服务器后,单击“远程登录”,可使用华为CloudShell远程登录如图所示。后续安装Docker、获取镜像、构建镜像等操作均在该ECS上进行。
ECS获取和上传基础镜像 Step1 创建镜像组织 在SWR服务页面创建镜像组织。 图1 创建镜像组织 Step2 登录ECS服务器 根据创建ECS服务器创建完成ECS服务器后,单击“远程登录”,可使用华为CloudShell远程登录如图所示。后续安装Docker、获取镜像、构建镜像等操作均在该ECS上进行。
华为云CCE集群纳管GPU裸金属服务器由于CloudInit导致纳管失败的解决方案 问题现象 创建出3台GPU裸金属服务器,使用A节点制作镜像,用于在CCE纳管裸金属服务器时,使用该镜像,但是纳管后发现服务器A纳管失败,剩下两台服务器纳管成功。 原因分析 在CCE纳管过程中,需要通过cloudinit
常见问题 模型转换失败怎么办? 常见的模型转换失败原因可以通过查询转换失败错误码来确认具体导失败的原因。Stable Diffusion新推出的模型在转换中可能会遇到算子不支持的问题,您可以到华为云管理页面上提交工单来寻求帮助。 图片大Shape性能劣化严重怎么办? 在昇腾设备上,可
常见的错误码还包括247、139等。 退出码137或者247 可能是内存溢出造成的。请减少数据量、减少batch_size,优化代码,合理聚合、复制数据。 请注意,数据文件大小不等于内存占用大小,需仔细评估内存使用情况。 退出码139 请排查安装包的版本,可能存在包冲突的问题。 排查办法
本地调测'local'或云端资源规格。每个region的资源规格可能是不同的,可以通过下述说明查询对应的资源规格信息。 train_instance_count 节点数 log_url 日志输出路径 job_name 作业名称,不可以重复 train_instance_type表示训练的资源规格,每个r
在JupyterLab浏览器左侧导航删除文件后,会默认放入回收站占用内存,导致磁盘空间不足。 磁盘配额不足。 处理方法 查看虚拟机所使用的存储空间,再查看回收站文件占用内存,根据实际删除回收站里不需要的大文件。 在Notebook实例详情页,查看实例的存储容量。 执行如下命令,排查虚拟机所使用的存储空间,一般接近存储容量,请排查回收站占用内存。
GP Vnt1裸金属服务器用PyTorch报错CUDA initialization:CUDA unknown error 问题现象 在Vnt1 GPU裸金属服务器(Ubuntu18.04系统),安装NVIDIA 470+CUDA 11.4后使用“nvidia-smi”和“nvcc
IAM用户获得权限后,登录ModelArts管理控制台,删除该实例,然后重新使用此OBS路径创建Notebook实例。 报错503 如果出现503错误,可能是由于该实例运行代码时比较耗费资源。建议先停止当前Notebook实例,然后重新启动。 报错504 如果报此错误时,请提工单或拨打热线电话协助解决。提工单
专属资源池可访问公网。 “规格类型”和“节点数量”根据训练计划使用的资源选择。 在ECS服务器挂载SFS Turbo存储 在ECS服务器挂载SFS Turbo存储后,支持将训练所需的数据通过ECS上传至SFS Turbo。 检查云服务环境。 ECS服务器和SFS的共享硬盘在相同的VPC或者对应VPC能够互联。
获取模型推理的Profiling数据 Profiling数据是程序运行过程中收集到的系统资源(如CPU、内存、磁盘 I/O等)的使用情况、程序的运行时间、函数的调用频率等数据,以发现系统性能瓶颈,优化程序代码和系统配置。 目前支持两种获取Profiling数据的方法,分别是通过L
训练作业运行失败 训练作业运行失败排查指导 训练作业运行失败,出现NCCL报错 自定义镜像训练作业失败定位思路 使用自定义镜像创建的训练作业一直处于运行中 使用自定义镜像创建训练作业找不到启动文件 训练作业的监控内存指标持续升高直至作业失败 订阅算法物体检测YOLOv3_ResN
如何定位Workflow运行报错 使用run模式运行工作流报错时,分析解决思路如下: 确认安装的SDK包是否是最新版本,避免出现包版本不一致问题。 检查编写的SDK代码是否符合规范,具体可参考相应的代码示例。 检查运行过程中输入的内容是否正确,格式是否与提示信息中要求的一致。 根
问题1:在训练过程中遇到NPU out of memory 解决方法: 容器内执行以下命令,指定NPU内存分配策略的环境变量,开启动态内存分配,即在需要时动态分配内存,可以提高内存利用率,减少OOM错误的发生。 export PYTORCH_NPU_ALLOC_CONF = exp
问题1:在训练过程中遇到NPU out of memory 解决方法: 容器内执行以下命令,指定NPU内存分配策略的环境变量,开启动态内存分配,即在需要时动态分配内存,可以提高内存利用率,减少OOM错误的发生。 export PYTORCH_NPU_ALLOC_CONF = exp
问题1:在训练过程中遇到NPU out of memory 解决方法: 容器内执行以下命令,指定NPU内存分配策略的环境变量,开启动态内存分配,即在需要时动态分配内存,可以提高内存利用率,减少OOM错误的发生。 export PYTORCH_NPU_ALLOC_CONF = exp
问题1:在训练过程中遇到NPU out of memory 解决方法: 容器内执行以下命令,指定NPU内存分配策略的环境变量,开启动态内存分配,即在需要时动态分配内存,可以提高内存利用率,减少OOM错误的发生。 export PYTORCH_NPU_ALLOC_CONF = exp
在线服务部署完成且服务已经处于“运行中”的状态,向服务发起推理请求,报错“ModelArts.4206”。 原因分析 ModelArts.4206表示该API的请求流量超过了设定值。为了保证服务的平稳运行,ModelArts对单个API的推理请求流量做了限制,同时为了保证推理服务可以稳定运行在合理区间
Server提供多样化的xPU裸金属服务器,赋予用户以root账号自主安装和部署AI框架、应用程序等第三方软件的能力,为用户打造专属的云上物理服务器环境。用户只需轻松选择服务器的规格、镜像、网络配置及密钥等基本信息,即可迅速创建弹性裸金属服务器,获取所需的云上物理资源,充分满足算法工程师在日常训练和推理工作中的需求。
一台可访问外网的Ubuntu服务器。如果没有请具备以下条件: 准备一台ECS服务器(建议规格选8U或者以上,镜像选择Ubuntu,建议选择22.04版本,本地存储100G),具体操作请参考《购买弹性云服务器》。 购买弹性公网IP,并绑定到购买的弹性云服务器ECS上,具体操作请参见《弹性公网IP快速入门》。