检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
book实例,用户已有实例仍可以继续使用。后续删除实例后将无法再新建。如您有任何问题,可随时通过工单或者服务热线(4000-955-988或950808)与我们联系。 常见问题 下线镜像对现有用户的使用是否有影响? 下线镜像对已有用户不影响,用户可以继续使用已有实例启动Noteb
数据选择:数据选择一般是指从全量数据中选择数据子集的过程。 数据可以通过相似度或者深度学习算法进行选择。数据选择可以避免人工采集图片过程中引入的重复图片、相似图片等问题;在一批输入旧模型的推理数据中,通过内置规则的数据选择可以进一步提升旧模型精度。 数据增强: 数据扩增通过简单的数据扩
git测试网络连通情况。 图6 Clone仓库失败 如果克隆时遇到Notebook当前目录下已有该仓库,系统给出提示仓库名称重复,此时可以单击“覆盖”继续克隆仓库,也可以单击取消。 父主题: 上传文件至JupyterLab
处理方法 对挂载盘的数据加权限,可以改为与训练容器内相同的用户组(1000),假如/nas盘是挂载路径,执行如下代码。 chown -R 1000:1000 /nas 或者 chmod 777 -R /nas 如果是自定义镜像中拉取的.sh脚本没有执行权限,可以在自定义脚本启动前执行"chmod
在创建训练作业时,数据可以保存到OBS上。不建议使用TensorFlow、MXNet、PyTorch的OBS接口直接从OBS上读取数据。 如果文件较小,可以将OBS上的数据保存成“.tar”包。训练开始时从OBS上下载到“/cache”目录,解压以后使用。 如果文件较大,可以保存成多个“.
Standard,并进行在线推理预测的体验过程。 面向AI开发零基础的用户 从0-1制作自定义镜像并创建AI应用 针对ModelArts不支持的AI引擎,您可以构建自定义镜像,并将镜像导入ModelArts,创建为模型。本案例详细介绍如何使用自定义镜像创建模型,并部署成在线服务。 面向熟悉代码编写
数据流更新:在实际应用中,数据可能会持续更新,增量训练允许模型适应新的数据而不必重新训练。 资源限制:如果重新训练一个大型模型成本过高,增量训练可以是一个更经济的选择。 避免灾难性遗忘:在传统训练中,新数据可能会覆盖旧数据的知识,导致模型忘记之前学到的内容。增量训练通过保留旧知识的同时学习新知识来避免这个问题。
如“按标签导入”:系统将自动获取此数据集的标签,您可以单击“添加标签”添加相应的标签。此字段为可选字段,您也可以在导入数据集后,在标注数据操作时,添加或删除标签。 图1 导入数据集-OBS 导入成功后,数据将自动同步到数据集中。您可以在“数据集”页面,单击数据集的名称,查看详细数据,并可以通过创建标注任务进行数据标注。
操作一:如果训练作业使用多个计算节点,可以通过实例名称的下拉框切换节点。 操作二:单击图例“cpuUsage”、“gpuMemUsage”、“gpuUtil”、“memUsage”“npuMemUsage”、“npuUtil”,可以添加或取消对应参数的使用情况图。 操作三:鼠
PU两种。您可以使用免费规格,端到端体验ModelArts Notebook能力。也可使用此免费算力,在线完成您的算法开发。 即开即用 无需创建Notebook实例,打开即可编码。 高效分享 ModelArts在AI Gallery中提供的Notebook样例,可以直接通过Run
<模型下载路径> 方法三:使用专用多线程下载器hfd:hfd 是本站开发的huggingface专用下载工具,基于成熟工具git+aria2,可以做到稳定下载不断线。 方法四:使用Git clone,官方提供了git clone repo_url的方式下载,但是不支持断点续传,并且clone会下载历史版本占用磁盘空间。
读取文件报错,您可以使用Moxing将数据复制至容器中,再直接访问容器中的数据。请参见步骤1。 您也可以根据不同的文件类型,进行读取。请参见读取“json”文件、读取“npy”文件、使用cv2库读取文件和在MXNet环境下使用torch包。 读取文件报错,您可以使用Moxing将
具,面对复杂问题时,才能进行进一步诊断与定位,进而发挥NPU的能力。 性能调优可以先将重点放在NPU不亲和的问题处理上,确保一些已知的性能问题和优化方法得到较好的应用。通用的训练任务调优、参数调优可以通过可观测数据来进行分析与优化,一般来说分段对比GPU的运行性能会有比较好的参考
pipeline输出的结果图片进行对比,在这里保证输入图片及文本提示词一致。如果差异较为明显可以进行模型精度调优。 确认性能是否满足要求 在推理代码开始结尾处加入时间记录,并打印出推理执行耗时。根据用户需求判断性能是否满足要求,如果不满足可以进行性能调优。 import time start_time = time
将进行难例筛选,该步骤不影响预标注结果。 选择模型及版本 “我的模型”。您可以根据实际需求选择您的模型。您需要在目标模型的左侧单击下拉三角标,选择合适的版本。您的模型导入参见创建模型。 “我的订阅”。您可以根据实际需求选择AI Gallery中已订阅的模型。您需要在目标模型的左侧
F1值是模型精确率和召回率的加权调和平均,用于评价模型的好坏,当F1较高时说明模型效果较好。 同一个自动学习项目可以训练多次,每次训练会注册一个新的模型一个版本。如第一次训练版本号为“0.0.1”,下一个版本为“0.0.2”。基于训练版本可以对训练模型进行管理。当训练的模型达到目标后,再执行模型部署的操作。 父主题:
包年/包月专属资源池从购买到被自动删除之前,您可以随时在ModelArts控制台为专属资源池续费,以延长专属资源池的使用时间。 自动续费 开通自动续费后,专属资源池会在每次到期前自动续费,避免因忘记手动续费而导致资源被自动删除。 在一个包年/包月专属资源池生命周期的不同阶段,您可以根据需要选择一种方式进行续费,具体如图1所示。
F1值是模型精确率和召回率的加权调和平均,用于评价模型的好坏,当F1较高时说明模型效果较好。 同一个自动学习项目可以训练多次,每次训练生成一个版本。如第一次训练版本号为“0.0.1”,下一个版本为“0.0.2”。基于训练版本可以对训练模型进行管理。当训练的模型达到目标后,再执行模型部署的操作。 父主题: 使用自动学习实现文本分类
查看日志和性能 查看日志 训练过程中,训练日志会在最后的Rank节点打印。 图1 打印训练日志 训练完成后,如果需要单独获取训练日志文件,可以在${OUTPUT_SAVE_DIR}/log路径下获取。 查看性能 训练性能主要通过训练日志中的2个指标查看,吞吐量和loss收敛情况。
F1值是模型精确率和召回率的加权调和平均,用于评价模型的好坏,当F1较高时说明模型效果较好。 同一个自动学习项目可以训练多次,每次训练会注册一个新的模型版本。如第一次训练版本号为“0.0.1”,下一个版本为“0.0.2”。基于训练版本可以对训练模型进行管理。当训练的模型达到目标后,再执行模型部署的操作。 父主题: 使用自动学习实现图像分类