检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
/scripts/llama2/0_pl_lora_13b.sh 选择用户自己的专属资源池,以及规格与节点数。防止训练过程中出现内存溢出的情况,用户可参考表2进行配置。 图2 选择资源池规格 新增SFS Turbo挂载配置,并选择用户创建的SFS Turbo文件系统。 云上挂载路径:输入镜像容器中的工作路径
“快速型”:仅使用已标注的样本进行训练。 “精准型”:会额外使用未标注的样本做半监督训练,使得模型精度更高。 计算节点规格 即智能标注任务使用的资源规格。 说明: 智能标注创建时免费,但OBS存储会按需收费,请参考计费详情。为保证您的资源不浪费,标注作业与后续任务完成后,请及时清理您的OBS桶。
推理业务迁移到昇腾的通用流程,可参考GPU推理业务迁移至昇腾的通用指导。 由于Huggingface网站的限制,访问Stable Diffusion链接时需使用代理服务器,否则可能无法访问网站。 在Stable Diffusion迁移适配时,更多的时候是在适配Diffusers和Stable Diffusion
启动入口文件run.sh需要自定义。示例如下: #!/bin/bash # 自定义脚本内容 ... # run.sh调用app.py启动服务器,app.py请参考https示例 python app.py 除了按上述要求设置启动命令,您也可以在镜像中自定义启动命令,在创建模型时填写与您镜像中相同的启动命令。
PYTORCH_NPU_ALLOC_CONF=expandable_segments:False;llava多卡启动时需要关闭虚拟内存扩展;开启时可能提升模型性能。允许分配器最初创建一个段,然后在以后需要更多内存时扩展它的大小。 --image-input-type:图像输入模式,pixel_values and
请参见训练tokenizer文件说明。 Step4 其他配置 选择用户自己的专属资源池,以及规格与节点数。防止训练过程中出现内存溢出的情况,用户可参考表1进行配置。 图2 选择资源池规格 作业日志选择OBS中的路径,训练作业的日志信息则保存该路径下。 最后,提交训练作业,训练完成
必须大于0,不配置默认值为1。当小于1时,代表滚动升级时增加的实例数的百分比;当大于1时,代表滚动升级时最大扩容的实例数。 max_unavailable 否 Float 必须大于0,不配置默认值为0。当小于1时,代表滚动升级时允许缩容的实例数的百分比;当大于1时,代表滚动升级时允许缩容的实例数。 te
PYTORCH_NPU_ALLOC_CONF=expandable_segments:False;llava多卡启动时需要关闭虚拟内存扩展;开启时可能提升模型性能。允许分配器最初创建一个段,然后在以后需要更多内存时扩展它的大小。 --image-input-type:图像输入模式,pixel_values and
请参见训练tokenizer文件说明。 Step4 其他配置 选择用户自己的专属资源池,以及规格与节点数。防止训练过程中出现内存溢出的情况,用户可参考表1进行配置。 图3 选择资源池规格 作业日志选择OBS中的路径,训练作业的日志信息则保存该路径下。 最后,提交训练作业,训练完成
DPO偏好训练、Reward奖励模型训练、PPO强化学习目前仅限制支持llama3系列。 PPO训练暂不支持llama3-70B,存在已知的内存OOM问题,待社区版本修复。 训练策略类型 全参full,配置如下: finetuning_type: full lora,如dpo仅支持此策略;配置如下:
的稳定性。详细可了解:无条件自动重启。 Step5 其他配置 选择用户自己的专属资源池,以及规格与节点数。防止训练过程中出现内存溢出的情况,用户可参考表1进行配置。 图4 选择资源池规格 作业日志选择OBS中的路径,训练作业的日志信息则保存该路径下。 最后,提交训练作业,训练完成
本号,实现服务升级。 推理服务有三种升级模式:全量升级、滚动升级(扩实例)和滚动升级(缩实例)。了解三种升级模式的流程,请参见图1。 全量升级 需要额外的双倍的资源,先全量创建新版本实例,然后再下线旧版本实例。 滚动升级(扩实例) 需额外消耗部分实例资源用于滚动升级,扩实例越大,升级速度越快。
服务部署、启动、升级和修改时,镜像不断重启如何处理? 问题现象 服务部署、启动、升级和修改时,镜像不断重启。 原因分析 容器镜像代码错误 解决方法 根据容器日志进行排查,修复代码,重新创建模型,部署服务。 父主题: 服务部署
请参见训练tokenizer文件说明。 Step4 其他配置 选择用户自己的专属资源池,以及规格与节点数。防止训练过程中出现内存溢出的情况,用户可参考表1进行配置。 图2 选择资源池规格 作业日志选择OBS中的路径,训练作业的日志信息则保存该路径下。 最后,提交训练作业,训练完成
、实例数、当前版本、目标版本、升级方式、升级范围和开启滚动开关。 目标版本:在目标版本下拉框中,选择一个目标驱动版本。 升级方式:可选择安全升级或强制升级。 安全升级:待节点上没有作业时再升级,升级周期可能比较长。 强制升级:忽略运行中作业,直接升级,可能会导致运行中作业失败。
资源池类型 资源池分为公共资源池与专属资源池。 公共资源池供所有租户共享使用。 专属资源池需单独创建,不与其他租户共享。 规格 选择规格,规格中描述了服务器类型、型号等信息,仅显示模型支持的资源。 计算节点个数 当计算节点个数大于1,将启动多节点分布式训练。详细信息,请参见分布式训练功能介绍。
启动入口文件run.sh需要自定义。示例如下: #!/bin/bash # 自定义脚本内容 ... # run.sh调用app.py启动服务器,app.py请参考https示例 python app.py 除了按上述要求设置启动命令,您也可以在镜像中自定义启动命令,在创建模型时填写与您镜像中相同的启动命令。
#安装opencompass脚本 ├──vllm_api.py #启动vllm api服务器 ├──vllm.py #构造vllm评测配置脚本名字 父主题: 准备工作
服务部署、启动、升级和修改时,拉取镜像失败如何处理? 问题现象 服务部署、启动、升级和修改时,拉取镜像失败。 原因分析 节点磁盘不足,镜像大小过大。 解决方法 首先考虑优化镜像,减小节点磁盘的占用。 优化镜像无法解决问题,请联系系统管理员处理。 父主题: 服务部署
在部署服务时,选择专属资源池,在选择“计算节点规格”时选择“自定义规格”,设置小一些或者选择小规格的服务节点规格,当资源池节点可以容纳多个服务节点规格时,就可以部署多个服务。如果使用此方式进行部署推理,选择的规格务必满足模型的要求,当设置的规格过小,无法满足模型的最小推理要求时,则会出现部署失败或预测失败的情况。