检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
配比图片类数据集 数据配比是将多个数据集按照特定比例关系组合并发布为“发布数据集”的过程,确保数据的多样性、平衡性和代表性。 如果单个数据集已满足您的需求,可跳过此章节至发布图片类数据集。 创建图片类数据集配比任务 创建图片类数据集配比任务步骤如下: 登录ModelArts St
开场白”中,可填写开场白,也可单击“智能添加 > 确定”智能添加开场白。 例如,“您好!我是您的智能助手,很高兴为您提供帮助。请告诉我,今天有什么我可以为您做的吗?” 在“对话体验 > 推荐问题”中,可填写推荐问题,也可单击“智能添加 > 确定”智能添加推荐问题。推荐问题至多配置3条。
创建推理作业 功能介绍 支持调用科学计算大模型创建气象/降水模型的推理作业。 URI 获取URI方式请参见请求URI。 请求参数 使用Token认证方式的请求Header参数见表1。 表1 请求Header参数(Token认证) 参数 是否必选 参数类型 描述 X-Auth-Token
气象/降水模型 创建推理作业 查询推理作业详情 父主题: 科学计算大模型
发布训练后的科学计算大模型 科学计算大模型训练完成后,需要执行发布操作,操作步骤如下: 登录ModelArts Studio大模型开发平台,在“我的空间”模块,单击进入所需空间。 在左侧导航栏中选择“模型开发 > 模型训练”,单击模型名称进入任务详情页。 单击进入“训练结果”页签,单击“发布”。
2025年1月发布的版本,用于天气基础要素预测,时间分辨率为24小时,1个训练单元起训及1个实例部署。 在选择和使用盘古大模型时,了解不同模型所支持的操作行为至关重要。不同模型在预训练、微调、模型评测、模型压缩、在线推理和能力调测等方面的支持程度各不相同,开发者应根据自身需求选择合适的模型。以下是盘古科学计算大模型支持的具体操作:
查看科学计算大模型部署任务详情 部署任务创建成功后,可以查看大模型部署的任务详情,具体步骤如下: 登录ModelArts Studio大模型开发平台,在“我的空间”模块,单击进入所需空间。 在左侧导航栏中选择“模型开发 > 模型部署”,完成创建科学计算大模型部署任务后,可以查看模型的部署状态。
查看科学计算大模型训练状态与指标 模型启动训练后,可以在模型训练列表中查看训练任务的状态,单击任务名称可以进入详情页查看训练结果、训练任务详情和训练日志。 查看模型训练状态 在模型训练列表中查看训练任务的状态,各状态说明详见表1。 表1 训练状态说明 训练状态 训练状态含义 初始化
管理科学计算大模型训练任务 在训练任务列表中,任务创建者可以对创建好的任务进行编辑、启动、克隆(复制训练任务)、重试(重新训练任务)和删除操作。 登录ModelArts Studio大模型开发平台,进入所需空间。 在左侧导航栏中选择“模型开发 > 模型训练”,进入模型训练页面,可进行如下操作:
盘古科学计算大模型微调训练实践 微调场景介绍 构建微调训练任务数据集 构建微调训练任务 构建部署任务 微调典型问题 父主题: 模型训练实践
科学计算大模型训练常见报错与解决方案 科学计算大模型训练常见报错及解决方案请详见表1。 表1 科学计算大模型训练常见报错与解决方案 常见报错 问题现象 原因分析 解决方案 创建训练任务时,数据集列表为空 创建训练任务时,数据集选择框中显示为空,无可用的训练数据集。 数据集未发布。
评估模型效果 训练作业完成后,可以通过平台提供的评估指标评估模型的效果,查看模型指标步骤如下: 使用最终租户登录ModelArts Studio平台,在“我的空间”模块,单击进入所需空间。 在左侧导航栏中选择“模型开发 > 模型训练”。 单击训练完成的模型,可在“训练结果”页面查
支持区域: 西南-贵阳一 使用盘古预置NLP大模型进行文本对话 应用百宝箱 应用百宝箱是盘古大模型为用户提供的便捷AI应用集,用户可在其中使用盘古大模型预置的场景应用和外部应用,轻松体验大模型开箱即用的强大能力。 支持区域: 西南-贵阳一 使用盘古应用百宝箱生成创意活动方案
大学习率,使用学习率预热(Warm-up)的方法,在训练初期逐步增加学习率,避免初始阶段学习率过小。 学习率太大时,损失曲线剧烈震荡,甚至出现梯度爆炸的问题,可以使用学习率衰减(Decay)策略,在训练过程中逐步减小学习率,避免后期学习率过大。建议动态调整学习率,使用自适应优化器
损失函数 损失函数(Loss Function)是用来度量模型的预测值f(x)与真实值Y的差异程度的运算函数。它是一个非负实值函数,通常使用L(Y, f(x))来表示,损失函数越小,模型的鲁棒性就越好。 推理相关概念 表3 训练相关概念说明 概念名 说明 温度系数 温度系数(t
丰富的外部服务接口,当任务执行时,模型会根据提示词感知适用的插件,并自动调用它们,从外部服务中获取结果并返回。这样的设计使得Agent能够智能处理复杂任务,甚至跨领域解决问题,实现对复杂问题的自动化处理。 Agent开发平台支持两种类型的插件: 预置插件:平台为开发者和用户提供了
模型在测试集上表现不佳,泛化能力差。 优化调整策略如下: 通过统计学方法如计算四分位距、Z-score、样本分布等排查异常值。 通过可视化方法,数据可视化或者使用箱线图进行异常值的排查。 结合数据自身特征,进行异常数据的筛选。 对于异常值,视情况进行删除、替换、保留等操作,兼顾模型的收敛与鲁棒性。 优化举例:
模型在测试集上表现不佳,泛化能力差。 通过统计学方法如计算四分位距、Z-score、样本分布等排查异常值。 通过可视化方法,数据可视化或者使用箱线图进行异常值的排查。 结合数据自身特征,进行异常数据的筛选。 对于异常值,视情况进行删除、替换、保留等操作,兼顾模型的收敛与鲁棒性。
空间管理 ModelArts Studio大模型开发平台为用户提供了灵活且高效的空间资产管理方式。平台支持用户根据不同的使用场景、项目类别或团队需求,自定义创建多个工作空间。每个工作空间都是完全独立的,确保了工作空间内的资产不受其他空间的影响,从而保障数据和资源的隔离性与安全性。
模型在测试集上表现不佳,泛化能力差。 通过统计学方法如计算四分位距、Z-score、样本分布等排查异常值。 通过可视化方法,数据可视化或者使用箱线图进行异常值的排查。 结合数据自身特征,进行异常数据的筛选。 对于异常值,视情况进行删除、替换、保留等操作,兼顾模型的收敛与鲁棒性。