检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
json存在模型对应的路径下,例如:/data/nfs/benchmark/tokenizer/chatglm3-6b/config.json 问题3:使用离线推理时,性能较差或精度异常。 解决方法:将block_size大小设置为128。 from vllm import LLM, SamplingParams
json存在模型对应的路径下,例如:/data/nfs/benchmark/tokenizer/chatglm3-6b/config.json 问题3:使用离线推理时,性能较差或精度异常。 解决方法:将block_size大小设置为128。 from vllm import LLM, SamplingParams
建议与总结 在创建训练作业前,推荐您先使用ModelArts开发环境调试训练代码,避免代码迁移过程中的错误。 直接使用线上notebook环境调试请参考使用JupyterLab开发模型。 配置本地IDE(Pycharm或者VSCode)联接云上环境调试请参考使用本地IDE开发模型。 父主题:
Step4 部署并启动推理服务 在Step3中的terminal部署并启动推理服务。有2种方式,使用vllm-api启动推理服务,或者使用openai-api启动推理服务。参考命令如下: # 使用vllm-api python vllm/entrypoints/api_server.py
运行指标,可选值如下: cpuUsage(CPU使用率)、memUsage(物理内存使用率)、gpuUtil(GPU使用率)、gpuMemUsage(显存使用率)、npuUtil(NPU使用率)、npuMemUsage(NPU显存使用率)。 value Array of numbers
String 运行指标,可选值如下: cpuUsage:CPU使用率 memUsage:物理内存使用率 gpuUtil:GPU使用率 gpuMemUsage:显存使用率 npuUtil:NPU使用率 npuMemUsage:NPU显存使用率 value Array of doubles 运
创建训练作业,并自定义名称、描述等信息。选择自定义算法,启动方式自定义,以及上传的镜像。训练脚本中会自动执行训练前的权重转换操作和数据处理操作。 图1 选择镜像 若镜像使用使用基础镜像中的基础镜像时,训练作业启动命令中输入: cd /home/ma-user/work/llm_train/AscendSpeed;
创建训练作业,并自定义名称、描述等信息。选择自定义算法,启动方式自定义,以及上传的镜像。训练脚本中会自动执行训练前的权重转换操作和数据处理操作。 图1 选择镜像 如果镜像使用使用基础镜像中的基础镜像时,训练作业启动命令中输入: cd /home/ma-user/work/llm_train/AscendSpeed;
创建训练作业,并自定义名称、描述等信息。选择自定义算法,启动方式自定义,以及上传的镜像。训练脚本中会自动执行训练前的权重转换操作和数据处理操作。 图1 选择镜像 如果镜像使用使用基础镜像中的基础镜像时,训练作业启动命令中输入: cd /home/ma-user/work/llm_train/AscendSpeed;
创建训练作业,并自定义名称、描述等信息。选择自定义算法,启动方式自定义,以及上传的镜像。训练脚本中会自动执行训练前的权重转换操作和数据处理操作。 图1 选择镜像 如果镜像使用使用基础镜像中的基础镜像时,训练作业启动命令中输入: cd /home/ma-user/work/llm_train/AscendSpeed;
创建训练作业,并自定义名称、描述等信息。选择自定义算法,启动方式自定义,以及上传的镜像。训练脚本中会自动执行训练前的权重转换操作和数据处理操作。 图1 选择镜像 如果镜像使用使用基础镜像中的基础镜像时,训练作业启动命令中输入: cd /home/ma-user/work/llm_train/AscendSpeed;
模型复杂化。 对同一个算法复杂化。例如回归模型添加更多的高次项,增加决策树的深度,增加神经网络的隐藏层数和隐藏单元数等。 弃用原来的算法,使用一个更加复杂的算法或模型。例如用神经网络来替代线性回归,用随机森林来代替决策树。 增加更多的特征,使输入数据具有更强的表达能力。 特征挖掘
er和推理代码。 准备数据 准备训练数据,可以用本案使用的数据集,也可以使用自己准备的数据集。 准备镜像 准备训练模型适用的容器镜像。 训练 启动训练 介绍各个训练阶段:指令微调、PPO强化训练、RM奖励模型、DPO偏好训练使用全参/lora训练策略进行训练任务、性能查看。 父主题:
若buildkitd的服务运行状态如下图所示,则表示服务运行成功。使用Ctrl+C即可退出查看状态。 步骤二:获取训练镜像 建议使用官方提供的镜像部署训练服务。镜像地址{image_url}参见镜像地址获取。 containerd 容器引擎有命名空间的概念。Kubernetes 下使用的 containerd 默认命名空间是
PIP安装对比图 推荐您使用本地Pycharm远程连接Notebook调试。 如果上述情况都解决不了,请联系技术支持工程师。 建议与总结 在创建训练作业前,推荐您先使用ModelArts开发环境调试训练代码,避免代码迁移过程中的错误。 直接使用线上notebook环境调试请参考使用JupyterLab开发模型。
json存在模型对应的路径下,例如:/data/nfs/benchmark/tokenizer/chatglm3-6b/config.json 问题3:使用离线推理时,性能较差或精度异常。 解决方法:将block_size大小设置为128。 from vllm import LLM, SamplingParams
json存在模型对应的路径下,例如:/data/nfs/benchmark/tokenizer/chatglm3-6b/config.json 问题3:使用离线推理时,性能较差或精度异常。 解决方法:将block_size大小设置为128。 from vllm import LLM, SamplingParams
建议与总结 在创建训练作业前,推荐您先使用ModelArts开发环境调试训练代码,避免代码迁移过程中的错误。 直接使用线上notebook环境调试请参考使用JupyterLab开发模型。 配置本地IDE(Pycharm或者VSCode)联接云上环境调试请参考使用本地IDE开发模型。 父主题:
<模型版本> --local-dir <模型下载路径> 方法三:使用专用多线程下载器 hfd:hfd 是本站开发的 huggingface 专用下载工具,基于成熟工具 git+aria2,可以做到稳定下载不断线。 方法四:使用Git clone,官方提供了 git clone repo_url
存在监控指标异常,执行3。 排查训练代码是否存在不断占用资源的代码,使得资源未被合理使用。 是,优化代码,等待作业运行正常。 否,提高训练作业使用的资源规格或者联系技术支持。 重启训练作业,使用CloudShell登录训练容器监控内存指标,确认是否有突发性的内存增加现象。 是,排