检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
ce的“single-file policy”的设计原则,它的三个主要模块Pipeline、Schedulers和预训练模型中,Pipeline和Schedulers都完全遵循了“single-file policy”原则。该设计原则更推荐直接复制粘贴代码,而不是进行抽象处理。因
这个工具需要具备以下的能力: 流程分析:沉淀行业样例流水线,帮助用户能快速进行AI项目的参考设计,启动快速的AI项目流程设计。 流程定义与重定义:以流水线作为承载项,用户能快速定义AI项目,实现训练+推理上线的工作流设计。 资源分配:支持账号管理机制给流水线中的参与人员(包含开发者和运维人员)分
PI,搭建企业专属方案、LLM驱动的语义搜索、多模态搜索增强。 盘古数字人大脑:基于在MaaS开源大模型部署的模型API,升级智能对话解决方案,含智能客服、数字人。 Dify:支持自部署的应用构建开源解决方案,用于Agent编排、自定义工作流。 操作步骤 登录ModelArts管理控制台。
增量模型训练 什么是增量训练 增量训练(Incremental Learning)是机器学习领域中的一种训练方法,它允许人工智能(AI)模型在已经学习了一定知识的基础上,增加新的训练数据到当前训练流程中,扩展当前模型的知识和能力,而不需要从头开始。 增量训练不需要一次性存储所有的
下的模型架构自动设计(神经网络搜索和自适应模型调优),和更快、更准的训练参数自动调优自动训练 采用自动机器学习技术,基于信息熵上限近似模型的树搜索最优特征变换和基于信息熵上限近似模型的贝叶斯优化自动调参,从企业关系型(结构化)数据中,自动学习数据特征和规律,智能寻优特征&ML模型
能的过程,也称为监督训练或有教师学习。常见的有回归和分类。 非监督学习:在未加标签的数据中,试图找到隐藏的结构。常见的有聚类。 强化学习:智能系统从环境到行为映射的学习,以使奖励信号(强化信号)函数值最大。 回归 回归反映的是数据属性值在时间上的特征,产生一个将数据项映射到一个实
视频标注:识别出视频中每个物体的位置及分类。目前仅支持mp4格式。 智能标注 除了人工标注外,ModelArts还提供了智能标注功能,快速完成数据标注,为您节省70%以上的标注时间。智能标注是指基于当前标注阶段的标签及图片学习训练,选中系统中已有的模型进行智能标注,快速完成剩余图片的标注操作。 目前只有
由于模型训练过程需要大量有标签的数据,因此在模型训练之前需对没有标签的数据添加标签。您可以通过创建单人标注作业或团队标注作业对数据进行手工标注,或对任务启动智能标注添加标签,快速完成对图片的标注操作,也可以对已标注图片修改或删除标签进行重新标注。 标注作业支持的数据类型 对于不同类型的数据集,用户
大模型应用开发,帮助开发者快速构建智能Agents 在企业中,项目级复杂任务通常需要理解任务并拆解成多个问题再进行决策,然后调用多个子系统去执行。MaaS基于多个优质昇腾云开源大模型,提供优质Prompt 模板,让大模型准确理解业务意图,分解复杂任务,沉淀出丰富的多个智能Agent,帮助企业快速智能构建和部署大模型应用。
人工标注图片数据 由于模型训练过程需要大量有标签的图片数据,因此在模型训练之前需对没有标签的图片添加标签。您可以通过手工标注或智能一键标注的方式添加标签,快速完成对图片的标注操作,也可以对已标注图片修改或删除标签进行重新标注。 针对图像分类场景,开始标注前,您需要了解: 图片标注支持多标签,即一张图片可添加多个标签。
Server资源配置流程 在开通Lite Server资源后,需要完成相关配置才能使用,配置流程如下图所示。 图1 Lite Server资源配置流程图 表1 Server资源配置流程 配置顺序 配置任务 场景说明 1 配置Lite Server网络 Server资源开通后,需要进行网络配
业务运行阶段,先将业务系统对接在线服务请求,然后进行业务逻辑处理和监控设置。 图1 推理服务的端到端运维流程图 整个运维过程会对服务请求失败和资源占用过高的场景进行监控,当超过阈值时发送告警通知。 图2 监控告警流程图 方案优势 通过端到端的服务运维配置,可方便地查看业务运行高低峰情况,并能够实时感知在线服务的健康状态。
大模型应用开发,帮助开发者快速构建智能Agents 在企业中,项目级复杂任务通常需要理解任务并拆解成多个问题再进行决策,然后调用多个子系统去执行。MaaS基于多个优质昇腾云开源大模型,提供优质Prompt模板,让大模型准确理解业务意图,分解复杂任务,沉淀出丰富的多个智能Agent,帮助企业快速智能构建和部署大模型应用。
主GPU(逻辑序号为0)收集各GPU的输出,汇总后计算损失 分发损失,各GPU各自反向传播梯度 主GPU收集梯度并更新参数,将更新后的模型参数分发到各GPU 具体流程图如下: 图1 单机多卡数据并行训练 代码改造点 模型分发:DataParallel(model) 完整代码由于代码变动较少,此处进行简略介绍。
算法类型:快速型 其他参数采用默认值。 图8 启动智能标注任务 查看智能标注任务进度 智能标注任务启动后,可以在“待确认”页签下查看智能标注任务进度。当任务完成后,即可在“待确认”页签下查看自动标注好的数据。 图9 查看智能标注任务进度 确认智能标注结果 在智能标注任务完成后,在“待确认”页签下
原因分析及处理方法 服务预测需要经过客户端、外部网络、APIG、Dispatch、模型服务多个环节。每个环节出现都会导致服务预测失败。 图1 推理服务流程图 出现APIG.XXXX类型的报错,表示请求在APIG(API网关)出现问题而被拦截。 常见问题请参见服务预测失败,报错APIG.XXXX。
都不收费。具体如下: 数据集:在ModelArts数据管理中创建数据集时,不收费。 数据标注:在ModelArts数据管理中进行手动标注和智能标注时,不收费。 数据处理:在ModelArts数据管理中创建数据清洗、数据校验、数据选择和数据增强的数据处理任务时,不收费。 但是存储到
14 yi-34b 15 ChatGLMv3 glm3-6b 16 Baichuan2 baichuan2-13b 操作流程 图1 操作流程图 表2 操作任务流程说明 阶段 任务 说明 准备工作 准备环境 本教程案例是基于ModelArts Lite DevServer运行的,需要购买并开通DevServer资源。
自动学习简介 自动学习功能介绍 ModelArts自动学习是帮助人们实现模型的低门槛、高灵活、零代码的定制化模型开发工具。自动学习功能根据标注数据自动设计模型、自动调参、自动训练、自动压缩和部署模型。开发者无需专业的开发基础和编码能力,只需上传数据,通过自动学习界面引导和简单操作即可完成模型训练和部署。
节点与节点之间的依赖关系由单箭头的线段来表示,依赖关系决定了节点的执行顺序,示例中的工作流在启动后将从左往右顺序执行。DAG也支持多分支结构,用户可根据实际场景进行灵活设计,在多分支场景下,并行分支的节点支持并行运行,具体请参考配置多分支节点数据章节。 表1 Workflow 属性 描述 是否必填 数据类型 name