检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
常。 failed:失败,服务部署失败,失败原因可以看事件和日志标签页。 stopped:停止。 finished:只有批量服务会有这个状态,表示运行完成。 stopping: 停止中。 deleting: 删除中。 pending: 待启动,仅在线有这个状态。 waiting:
指标维度列表。 metricName String 指标名称。 namespace String 指标命名空间。可选值如下: PAAS.CONTAINER:组件指标、实例指标、进程指标和容器指标的命名空间 PAAS.NODE: 主机指标、网络指标、磁盘指标和文件系统指标的命名空间 PAAS
"自动学习(图像分类、物体检测、声音分类)训练时长", "unit_cn" : "分钟", "name_en" : "ExeMLtraining duration (image classification, object detection, and soundclassification)"
使用ma-cli obs-copy命令复制OBS数据 使用ma-cli obs-copy [SRC] [DST]可以实现本地和OBS文件或文件夹的相互复制。 $ma-cli obs-copy -h Usage: ma-cli obs-copy [OPTIONS ] SRC
训练预测分析模型 创建自动学习后,将会进行模型的训练,得到预测分析的模型。模型部署步骤将使用预测模型发布在线预测服务。 操作步骤 在新版自动学习页面,单击创建成功的项目名称,查看当前工作流的执行情况。 在“预测分析”节点中,待节点状态由“运行中”变为“运行成功”,即完成了模型的自动训练。
部署预测分析服务 模型部署 模型部署操作即将模型部署为在线服务,并且提供在线的测试UI与监控能力。完成模型训练后,可选择准确率理想且训练状态为“运行成功”的版本部署上线。具体操作步骤如下。 在“运行节点”页面中,待训练状态变为“等待输入”,双击“服务部署”节点,完成相关参数配置。
docker_ip 是 str 启动多模态openAI服务的主机ip served_port 是 str 启动多模态openAI服务的端口号 表2 请求服务json参数说明 参数 是否必须 默认值 参数类型 描述 model 是 无 Str 通过OpenAI服务API接口启动服务时,推理请求必
docker_ip 是 str 启动多模态openAI服务的主机ip served_port 是 str 启动多模态openAI服务的端口号 表2 请求服务json参数说明 参数 是否必须 默认值 参数类型 描述 model 是 无 Str 通过OpenAI服务API接口启动服务时,推理请求必
"password": "user_password", "domain": { "name": "domain_name" } } } }, "scope":
15.0", "restraint": "EXACT" }, { "package_name": "h5py", "package_version": "2.8.0", "restraint": "EXACT"
Spark details. Example: # Get DLI Spark job details by job name ma-cli dli-job get-job -n ${job_name} # Get DLI Spark job details by job
参数描述信息。 constraint 否 ParametersConstraint object 参数属性。 i18n_description 否 I18nDescription object 国际化描述。 表6 ParametersConstraint 参数 是否必选 参数类型
5-32B、Qwen2.5-72B-1K或者Qwen2-VL-7B模型,创建训练任务失败。 关键日志报错(出现以下任意报错): 报错1: [INFO|trainer.py:2278] 2025-01-09 20:49:47,170 >> Will skip the first 5 epochs
如果不再使用ModelArts,如何停止收费? 在ModelArts中进行AI全流程开发时,主要包括存储费用、资源费用。如果不再使用ModelArts,需要停止/删除ModelArts中运行的服务;删除在OBS中存储的数据;删除在EVS中存储的数据。 清理存储数据 由于Model
/v2/{project_id}/training-jobs/{training_job_id} 表1 路径参数 参数 是否必选 参数类型 描述 project_id 是 String 用户项目ID。获取方法请参见获取项目ID和名称。 training_job_id 是 String
/v2/{project_id}/trainJob/{training_job_id}/tags/create 表1 路径参数 参数 是否必选 参数类型 描述 project_id 是 String 用户项目ID。获取方法请参见获取项目ID和名称。 training_job_id 是 String
/v2/{project_id}/training-jobs/{training_job_id} 表1 路径参数 参数 是否必选 参数类型 描述 project_id 是 String 用户项目ID。获取方法请参见获取项目ID和名称。 training_job_id 是 String
创建物体检测项目 ModelArts自动学习,包括图像分类、物体检测、预测分析、声音分类和文本分类项目。您可以根据业务需求选择创建合适的项目。您需要执行如下操作来创建自动学习项目。 创建项目 登录ModelArts管理控制台,在左侧导航栏单击“开发空间>自动学习”,进入新版自动学习页面。
创建Workflow数据集标注节点 功能介绍 通过对ModelArts数据集能力进行封装,实现数据集的标注功能。数据集标注节点主要用于创建标注任务或对已有的标注任务进行卡点标注,主要用于需要对数据进行人工标注的场景。 属性总览 您可以使用LabelingStep来构建数据集标注节点,LabelingStep结构如下:
values()) if len(inputs) <= 0: raise Exception('get tensor input info failed') ms_input = self.model.get_inputs()