检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
Size([63992, 4096]). 需要在训练开始前,修改llm_train/AscendSpeed/yi/3_training.sh文件,并添加--tokenizer-not-use-fast参数。修改后如图1所示。 图1 修改Yi 模型3_training.sh文件 ChatGLMv3-6B
640,640" ge.dynamicDims="1;8;16" 其中input_shape中的-1表示设置动态batch,ge.dynamicDims表示支持的batch值,上面的配置表示输入模型shape支持[1,3,640,640],[8,3,640,640],[16,3,640
0 Python版本:3.10 确保容器可以访问公网。 仅支持313T、376T、400T 训练支持的模型列表 本方案支持以下模型的训练,如表1所示。 表1 支持的模型列表及权重文件地址 支持模型 支持模型参数量 权重文件获取地址 Llama2 llama2-7b https://huggingface
Array<Object> 模型的参数列表,结构说明如表4所示。 表4 models结构数据 参数 参数类型 说明 model_id Integer 模型ID。 model_name String 模型名称。 model_usage Integer 模型用途。 1代表图像分类 2代表检测物体的类别和位置
ModelArts环境挂载目录说明 本小节介绍Notebook开发环境、训练任务实例的目录挂载情况(以下挂载点在保存镜像的时候不会保存)。详情如下: Notebook 表1 Notebook挂载点介绍 挂载点 是否只读 备注 /home/ma-user/work/ 否 客户数据的持久化目录。 /data 否 客户PFS的挂载目录。
能力,和高度自动化的参数配置机制,使得模型优化过程不再依赖于手动尝试,显著缩短了从模型开发到部署的周期,确保了模型在各类应用场景下的高性能表现,让客户能够更加聚焦于业务逻辑与创新应用的设计。 资源易获取,按需收费,按需扩缩,支撑故障快恢与断点续训 企业在具体使用大模型接入企业应用
yaml 执行如下命令,检查pod启动情况。如果显示“1/1 running”状态代表启动成功。 kubectl get pod 图3 启动成功的回显 执行如下命令,查看日志。日志显示如图所示表示成功执行动态路由。 kubectl logs {pod-name} 其中{pod-n
0 Python版本:3.10 确保容器可以访问公网。 仅支持313T、376T、400T 训练支持的模型列表 本方案支持以下模型的训练,如表1所示。 表1 支持的模型列表及权重文件地址 支持模型 支持模型参数量 权重文件获取地址 Llama2 llama2-7b https://huggingface
AKG由三个基本的优化模块组成:规范化、自动调度和后端优化。 规范化: 为了解决polyhedral表达能力的局限性(只能处理静态的线性程序),需要首先对计算公式IR进行规范化。规范化模块中的优化主要包括自动运算符inline、自动循环融合和公共子表达式优化等。 自动调度: 自动调度模块基于polyhedral技术
0 Python版本:3.10 确保容器可以访问公网。 仅支持313T、376T、400T 训练支持的模型列表 本方案支持以下模型的训练,如表1所示。 表1 支持的模型列表及权重文件地址 支持模型 支持模型参数量 权重文件获取地址 Llama2 llama2-7b https://huggingface
0.6 PyTorch版本:2.3.1 Python版本:3.10 确保容器可以访问公网。 训练支持的模型列表 本方案支持以下模型的训练,如表1所示。 表1 支持的模型列表及权重文件地址 支持模型 支持模型参数量 权重文件获取地址 Llama2 llama2-7b https://huggingface
Size([63992, 4096]). 需要在训练开始前,修改llm_train/AscendSpeed/yi/3_training.sh文件,并添加--tokenizer-not-use-fast参数。修改后如图1所示。 图1 修改Yi 模型3_training.sh文件 ChatGLMv3-6B
Size([63992, 4096]). 需要在训练开始前,修改llm_train/AscendSpeed/yi/3_training.sh文件,并添加--tokenizer-not-use-fast参数。修改后如图1所示。 图1 修改Yi 模型3_training.sh文件 ChatGLMv3-6B
Size([63992, 4096]). 需要在训练开始前,修改llm_train/AscendSpeed/yi/3_training.sh文件,并添加--tokenizer-not-use-fast参数。修改后如图1所示。 图1 修改Yi 模型3_training.sh文件 ChatGLMv3-6B
使用AI资产时,可能需要消耗硬件资源,硬件资源费用将根据实际使用情况,由华为云ModelArts等管理控制台向使用方收取。 已发布的AI资产,如果不需要在资产列表中展示该资产,可以将资产下架。下架后,已发布资产仅发布者可见。已经被订阅的资产,即便资产下架后,基于配额资源的约束,仍然可有效使用该资产,不会因为该资产的下架而产生使用问题。
output \ --code_type utf-8 参数解释如表1所示。 当转换为sharegpt格式时,prefix和input会拼接成一段文字,作为human字段,提出问题,而output字段会作为gpt字段,做出回答。 表1 数据集转换为sharegpt格式阶段(可选) py文件名称
Size([63992, 4096]). 需要在训练开始前,修改llm_train/AscendSpeed/yi/3_training.sh文件,并添加--tokenizer-not-use-fast参数。修改后如图1所示。 图1 修改Yi 模型3_training.sh文件 ChatGLMv3-6B
Size([63992, 4096]). 需要在训练开始前,修改llm_train/AscendFactory/yi/3_training.sh文件,并添加--tokenizer-not-use-fast参数。修改后如图1所示。 图1 修改Yi 模型3_training.sh文件 ChatGLMv3-6B
Size([63992, 4096]). 需要在训练开始前,修改llm_train/AscendFactory/yi/3_training.sh文件,并添加--tokenizer-not-use-fast参数。修改后如图1所示。 图1 修改Yi 模型3_training.sh文件 ChatGLMv3-6B
Size([63992, 4096]). 需要在训练开始前,修改llm_train/AscendFactory/yi/3_training.sh文件,并添加--tokenizer-not-use-fast参数。修改后如图1所示。 图1 修改Yi 模型3_training.sh文件 ChatGLMv3-6B