检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
图2 数据标注-文本分类 添加或删除数据 自动学习项目中,数据来源为数据集中输入位置对应的OBS目录,当目录下的数据无法满足现有业务时,您可以在ModelArts自动学习页面中,添加或删除数据。 添加文件 在“未标注”页签下,可单击页面左上角的“添加数据”,您可以在弹出对话框中,选择本地文件上传。
推理专属预置镜像列表 ModelArts的推理平台提供了一系列的基础镜像,用户可以基于这些基础镜像构建自定义镜像,用于部署推理服务。 X86架构(CPU/GPU)的推理基础镜像 表1 TensorFlow AI引擎版本 支持的运行环境 镜像名称 URI 2.1.0 CPU GPU(cuda10
集;使用自定义数据集时,请更新代码目录下data/dataset_info.json文件;请务必在dataset_info.json文件中添加数据集描述。 关于数据集文件的格式及配置,请参考data/README_zh.md的内容。可以使用HuggingFace/ModelScope上的数据集或加载本地数据集。
有两种,通过本地添加图片和同步OBS中的图片数据。 图3 添加本地图片 图4 同步OBS图片数据 添加数据:您可以将本地图片快速添加到ModelArts,同时自动上传至创建项目时所选择的OBS路径中。单击“添加数据”,根据弹出的对话框的引导,输入正确的数据并添加。 同步新数据:将
select:单选下拉列表 values Array of LabelAttributeValue objects 标签属性值列表。 表7 LabelAttributeValue 参数 参数类型 描述 id String 标签属性值ID。 value String 标签属性值。 表8 LabelProperty
支持的模型列表 表1 支持的大语言模型列表和权重获取地址 序号 模型名称 是否支持fp16/bf16推理 是否支持W4A16量化 是否支持W8A8量化 是否支持W8A16量化 是否支持 kv-cache-int8量化 开源权重获取地址 1 llama-7b √ √ √ √ √ https://huggingface
模型NPU卡数、梯度累积值取值表 不同模型推荐的训练参数和计算规格要求如表1所示。规格与节点数中的1*节点 & 4*Ascend表示单机4卡,以此类推。 表1 NPU卡数、加速框架、梯度配置取值表 模型 模型参数量 训练类型 序列长度cutoff_len 梯度累积值 优化工具(Deepspeed)
模型NPU卡数、梯度累积值取值表 不同模型推荐的训练参数和计算规格要求如表1所示。规格与节点数中的1*节点 & 4*Ascend表示单机4卡,以此类推。 表1 NPU卡数、加速框架、梯度配置取值表 模型 Template 模型参数量 训练策略类型 序列长度cutoff_len 梯度累积值
sh脚本,自定义环境变量的值,并在脚本的首行中添加 cd /home/ma-user/work/llm_train/AscendSpeed/ModelLink 命令,随后在Notebook中运行该脚本。 其中环境变量详细介绍如下: 表1 数据预处理中的环境变量 环境变量 示例 参数说明
CTS支持追踪的ModelArts管理事件和数据事件列表,请参见支持云审计的关键操作、开发环境支持审计的关键操作列表、训练作业支持审计的关键操作列表、模型管理支持审计的关键操作列表、服务管理支持审计的关键操作列表。 图1 云审计服务 数据管理支持审计的关键操作列表 表1 数据管理支持审计的关键操作列表 操作名称 资源类型
sh脚本,自定义环境变量的值,并在脚本的首行中添加 cd /home/ma-user/work/llm_train/AscendSpeed/ModelLink 命令,随后在Notebook中运行该脚本。 其中环境变量详细介绍如下: 表1 数据预处理中的环境变量 环境变量 示例 参数说明
模型NPU卡数取值表 不同模型推荐的训练参数和计算规格要求如表1所示。规格与节点数中的1*节点 & 4*Ascend表示单机4卡,以此类推 表1 模型NPU卡数取值表 支持模型 支持模型参数量 文本序列长度 训练类型 Zero并行 规格与节点数 llama3 70B cutoff_len=4096
formatter_class=argparse.ArgumentDefaultsHelpFormatter) # 添加参数 parser.add_argument('--train_url', type=str, help='the
查询数据集的标注任务列表 查询当前数据集的所有标注任务列表。 dataset.get_label_tasks(is_workforce_task=False, **kwargs) 示例代码 示例一:查询数据集下所有的标注任务,根据标注任务创建时间降序排序。 from modelarts
ata/status 表1 路径参数 参数 是否必选 参数类型 描述 dataset_id 是 String 数据集ID。 project_id 是 String 用户项目ID。获取方法请参见获取项目ID和名称。 请求参数 无 响应参数 状态码: 200 表2 响应Body参数 参数
0镜像中的libmkldnn软连接与原生torch的冲突,具体可参看文档。 处理方法 按照issues中的说明,应该是环境中的库冲突了,因此在启动脚本最开始之前,添加如下代码。 import os os.system("rm /home/work/anaconda3/lib/libmkldnn.so")
标注”的文本,默认显示“未标注”的文本列表。 在“未标注”页签文本列表中,页面左侧罗列“标注对象列表”。在列表中单击需标注的文本对象,选择右侧“标签集”中的标签进行标注。一个标注对象可添加多个标签。 以此类推,不断选中标注对象,并为其添加标签。 图4 文本分类标注 当所有的标注对
”的音频列表。单击音频左侧,即可进行音频的试听。 在“未标注”页签,勾选需进行标注的音频。 手工点选:在音频列表中,单击音频,当右上角出现蓝色勾选框时,表示已勾选。可勾选同类别的多个音频,一起添加标签。 批量选中:如果音频列表的当前页,所有音频属于一种类型,可以在列表的右上角单击
无 响应参数 状态码: 200 表3 响应Body参数 参数 参数类型 描述 count Integer 版本总数。 versions Array of DescTaskVersionResp objects 分页查询到的数据处理任务版本列表。 表4 DescTaskVersionResp
准备数据 本教程使用到的训练数据集是Alpaca数据集。您也可以自行准备数据集。 数据集下载 本教程使用Alpaca数据集,数据集的介绍及下载链接如下。 Alpaca数据集是由OpenAI的text-davinci-003引擎生成的包含52k条指令和演示的数据集。这些指令数据可以