检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
图2 我的凭证 在API凭证页面获取IAM用户名、用户ID、账号名和账号ID。 图3 获取IAM用户名/用户ID/账号名/账号ID 父主题: 一般性问题
则需按照标签策略规则为资源添加标签。标签如果不符合标签策略的规则,则可能会导致资源创建失败,请联系组织管理员了解标签策略详情。 父主题: 一般性问题
数据集如何切分 在发布数据集时,仅“图像分类”、“物体检测”、“文本分类”和“声音分类”类型数据集支持进行数据切分功能。 一般默认不启用该功能。启用后,需设置对应的训练验证比例。 输入“训练集比例”,数值只能是0~1区间内的数。设置好“训练集比例”后,“验证集比例”自动填充。“训练集比例”加“验证集比例”等于1。
训练输出的日志只保留3位有效数字,是否支持更改loss值? 在训练作业中,训练输出的日志只保留3位有效数字,当loss过小的时候,显示为0.000。具体日志如下: INFO:tensorflow:global_step/sec: 0.382191 INFO:tensorflow:step:
不支持指定。 切分比例的指定: 在发布数据集时,仅“图像分类”、“物体检测”、“文本分类”和“声音分类”类型数据集支持进行数据切分功能。 一般默认不启用该功能。启用后,需设置对应的训练验证比例。 输入“训练集比例”,数值只能是0~1区间内的数。设置好“训练集比例”后,“验证集比例
户手动输入的参数。具体获取方式如下: 创建训练作业时,“输入”支持配置训练的输入参数名称(一般设置为“data_url”),以及输入数据的存储位置,“输出”支持配置训练的输出参数名称(一般设置为“train_url”),以及输出数据的存储位置。 训练作业运行成功之后,在训练作业列
需确保当前用户具备Manifest文件所在OBS路径的权限。 Manifest文件编写规范要求较多,推荐使用OBS目录导入方式导入新数据。一般此功能常用于不同区域或不同账号下ModelArts的数据迁移,即当您已在某一区域使用ModelArts完成数据标注,发布后的数据集可从输出
原因分析 文件夹“.ssh”的权限不仅是Windows当前用户拥有,或者当前用户权限不足,故修改权限即可。 解决方案 找到.ssh文件夹。一般位于“C:\Users”,例如“C:\Users\xxx”。 “C:\Users”目录下的文件名必须和Windows登录用户名完全一致。 右键单击
训练作业常用文件路径是什么? 训练环境的当前目录以及代码目录在容器的位置一般通过环境变量${MA_JOB_DIR}读取,${MA_JOB_DIR}变量对应的实际值是/home/ma-user/modelarts/user-job-dir。 父主题: 编写训练代码
Code端的实例目录和云上目录不匹配。 原因分析 实例连接错误,可能是配置文件写的不规范导致连接到别的实例。 解决方案 检查用户.ssh配置文件(路径一般在“C:\Users\{User}\.ssh\config”下),检查每组配置文件是否规范:Host必须放在每组配置的第一行,作为每组配置的唯一ID。
数据清洗是在数据校验的基础上,对数据进行一致性检查,处理一些无效值。例如在深度学习领域,可以根据用户输入的正样本和负样本,对数据进行清洗,保留用户想要的类别,去除用户不想要的类别。 数据选择:数据选择一般是指从全量数据中选择数据子集的过程。 数据可以通过相似度或者深度学习算法进行选择。数据选择可以避免人工采集图
aoe_unet.log 启动AOE调优后,模型转换时长会延长到数小时,因为其中包含了AOE的转化过程耗时较长。您也可以指定调优时间,一般情况下时间越长效果会越好,一般10h以内即可,推荐在后台执行。调优完成后,默认将AOE生成的知识库保存在“/root/Ascend/latest/data
队列名称:系统自动将当前账号下的DLI队列展现在列表中,用户可以在下拉框中选择需要的队列。 数据库名称:根据选择的队列展现所有的数据库,请在下拉框中选择您所需的数据库。 表名称:根据选择的数据库展现此数据库中的所有表。请在下拉框中选择您所需的表。 DLI的default队列只用作体验,不同
需要对应的数据库名、表名以及用户名和密码。所导入表的schema(列名和类型)需要跟数据集相同。DWS的详细功能说明,请参考DWS用户指南。 图1 从DWS导入数据 集群名称:系统自动将当前账号下的DWS集群展现在列表中,您可以在下拉框中选择您所需的DWS集群。 数据库名称:根据
创建算法 机器学习从有限的观测数据中学习一般性的规律,并利用这些规律对未知的数据进行预测。为了获取更准确的预测结果,用户需要选择一个合适的算法来训练模型。针对不同的场景,ModelArts提供大量的算法样例。以下章节提供了关于业务场景、算法学习方式、算法实现方式的指导。 选择算法的实现方式
离线训练安装包准备说明 申请的模型软件包一般依赖连通网络的环境。若用户的机器或资源池无法连通网络,并无法git clone下载代码、安装python依赖包的情况下,用户则需要找到已联网的机器(本章节以Linux系统机器为例)提前下载资源,以实现离线安装。用户可遵循以下步骤操作。 步骤一:资源下载
下图所示。通过设置开关选项(是否使用onnx模型),控制模型推理时,模型使用的是onnx模型或是mindir的模型。 图1 精度诊断流程 一般情况下,onnx模型推理的结果可以认为是标杆数据,单独替换某个onnx模型为MindSpore Lite模型,运行得到的结果再与标杆数据做
获取AK/SK。该AK/SK用于后续脚本配置,做认证授权。 如果已生成过AK/SK,则可跳过此步骤,找到原来已下载的AK/SK文件,文件名一般为:credentials.csv。 如下图所示,文件包含了租户名(User Name),AK(Access Key Id),SK(Secret
book实例停止或重启后,不会被保存。存储在“/home/ma-user/work”目录下的数据,在Notebook实例停止或重启后,会被保留。 为避免重启,请勿在开发环境中进行重型作业训练,如大量占用资源的作业。 父主题: 数据存储
AI开发的目的是什么 AI开发的目的是将隐藏在一大批数据背后的信息集中处理并进行提炼,从而总结得到研究对象的内在规律。 对数据进行分析,一般通过使用适当的统计、机器学习、深度学习等方法,对收集的大量数据进行计算、分析、汇总和整理,以求最大化地开发数据价值,发挥数据作用。 AI开发的基本流程