检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
无监督领域知识数据量无法支持增量预训练,如何进行模型学习 一般来说,建议采用增量预训练的方式让模型学习领域知识,但预训练对数据量的要求较大,如果您的无监督文档量级过小,达不到预训练要求,您可以通过一些手段将其转换为有监督数据,再将转换后的领域知识与目标任务数据混合,使用微调的方式让模型学习。
LP大模型不涉及物理实体资源,因此无宽限期。欠费后继续调用服务会导致账户冻结,并直接进入保留期,保留期按需资源不可调用。续费后可恢复正常使用,但续费的生效时间以原到期时间为准,需支付从进入保留期开始至续费时的费用。 账户欠费后,部分操作将受限,建议您尽快续费。具体受限操作如下: 按需方式的API接口不可调用。
续费 包周期服务到期后,您可以通过手动续费来延长服务的有效期。 包周期服务到期后,如果在保留期结束前未完成续费,后续则不能再对已过保留期的服务进行续费操作,需重新购买对应的服务。
停止计费 包周期服务到期后,保留期时长将根据“客户等级”定义。在保留期内的资源处理和费用请参见“保留期”。 按需计费模式下,若账户欠费,保留期时长同样依据“客户等级”定义。在保留期内的资源处理和费用请参见“保留期”。 如果保留期结束后仍未续订或充值,数据将被删除且无法恢复。
和真实结果之间的差距的指标,正常情况下越小越好。 您可以从平台的训练日志中获取到每一步的Loss,并绘制成Loss曲线,来观察其变化趋势。一般来说,一个正常的Loss曲线应该是单调递减的,即随着训练的进行,Loss值不断减小,直到收敛到一个较小的值。 以下给出了几种正常的Loss曲线形式:
如何调整训练参数,使盘古大模型效果最优 模型微调参数的选择没有标准答案,不同的场景,有不同的调整策略。一般微调参数的影响会受到以下几个因素的影响: 目标任务的难度:如果目标任务的难度较低,模型能较容易的学习知识,那么少量的训练轮数就能达到较好的效果。反之,若任务较复杂,那么可能就需要更多的训练轮数。
资源和推理资源费用组成。了解每种计费项的详细信息,请参考计费项。 续费 包周期资源到期后,如果您想继续使用服务,需要在保留期内进行手动续费,否则不能再对已过保留期的服务进行续费操作,需重新购买对应的服务。了解更多关于续费的信息,请参见续费。 欠费 在使用云服务时,账户的可用额度小
度)。 25km*25km。 全球范围,纬度90N~-90S,经度0W~360E。 训练集和验证集均推荐使用>1个月的历史数据。 训练数据一般可通过公开数据集获取,例如ERA5。ERA5是由欧洲中期天气预报中心(ECMWF)提供的全球气候的第五代大气再分析数据集,它覆盖从1940
{"context":"轻便折叠户外椅,舒适随行\n请根据以上的内容和要求扩写一篇带货口播文案,注意:1.开头引起观众的兴趣2.扩写要保留以上内容全部信息,结合观众需求突出商品特点3.在结尾引导观众行动。要求口语化。需要300字。", "target": "嗨!亲爱的朋友们,
温度主要用于控制模型输出的随机性和创造性。温度越高,输出的随机性和创造性越高;温度越低,输出结果越可以被预测,确定性相对也就越高。 您可根据真实的任务类型进行调整。一般来说,如果目标任务的需要生成更具创造性的内容,可以使用较高的温度,反之如果目标任务的需要生成更为确定的内容,可以使用较低的温度。 请注意,
设置字符,则保留,反之则删除整篇文档。根据如下特征过滤: 待保留的平均句长。 词语特征过滤 词个数表示按照系统词库,对文档进行分词,分词后统计词的总个数,平均词长度为所有词的长度总和除以词总个数,两者都满足则保留当前文档。根据如下特征过滤: 待保留的词个数。 待保留的平均词长度。
过滤文本长度不在“文本长度范围”内的图文对。一个中文汉字或一个英文字母,文本长度均计数为1。 图文文本语言过滤 通过语种识别模型得到图文对的文本语种类型,“待保留语种”之外的图文对数据将被过滤。 图文去重 基于结构化图片去重 判断相同文本对应不同的图片数据是否超过阈值,如果超过则去重。 图片去重 通
在城市政务“一网统管”的场景中,往往建设有庞大复杂的城市事件类别体系,包含了繁多细碎的事项类别,如垃圾暴露、道路破损、围栏破损等,一个城市一般有几百种事件类别。同时,不同城市可能还有不同的标准,某城市关注某一些特定事件类别,另一个城市又关注另一些特定事件类别。因此,城市政务场景面临着众多碎片化AI需求场景。
识别视频中是否包含Logo。 视频黑边识别 识别视频中是否包含黑边。 密集文字识别 识别视频中是否包含密集文字,达到密集文字面积占比的视频则为含密集文字视频,一般裁剪面积占比≥7%为密集文字视频。 父主题: 数据集清洗算子介绍
训练损失值是一种衡量模型预测结果和真实结果之间的差距的指标,通常情况下越小越好。这里代表高空Loss(深海Loss)和表面Loss(海表Loss)的综合Loss。 一般来说,一个正常的Loss曲线应该是单调递减的,即随着训练的进行,Loss值不断减小,直到收敛到一个较小的值。 高空Loss(深海Loss)
训练指标说明 模型 训练指标 指标说明 NLP大模型 训练损失值 训练损失值是一种衡量模型预测结果和真实结果之间的差距的指标,通常情况下越小越好。 一般来说,一个正常的Loss曲线应该是单调递减的,即随着训练的进行,Loss值不断减小,直到收敛到一个较小的值。 验证损失值 模型在验证集上的
避免过拟合,常用于提升模型在测试数据集上的泛化能力。 极大值抑制阈值 在预测多个边界框时,用于去除高度重叠的边界框。此阈值控制相似的边界框保留的条件。 类别无关极大值抑制开关 决定是否在不同类别中应用极大值抑制阈值。 资源配置 训练单元 创建当前训练任务所需的训练单元数量。 订阅提醒
业务逻辑的复杂性 判断任务场景的业务逻辑是否符合通用逻辑。如果场景中的业务逻辑较为简单、通用且易于理解,那么调整提示词是一个可行的方案。 例如,对于一般的常规问题解答等场景,可以通过在提示词中引导模型学习如何简洁明了地作答。 如果场景涉及较为复杂、专业的业务逻辑(例如金融分析、医疗诊断等),则需要更为精确的处理方式:
索模块。 检索模块:输入待检索的query,输出从文档检索库中检索出来的文档以及对应的相关性得分score,基于score做阈值判断,是否保留该检索所得问答。由于该场景是打造一个政务问答助手,其中,文档检索库可以放入政务文档数据。 问答模块:针对用户的输入,由问答模块最终输出。该
训练指标说明 模型 训练指标 指标说明 CV大模型 训练损失值 训练损失值是一种衡量模型预测结果和真实结果之间的差距的指标,通常情况下越小越好。 一般来说,一个正常的Loss曲线应该是单调递减的,即随着训练的进行,Loss值不断减小,直到收敛到一个较小的值。 频率加权交并比 频率加权交并