检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
r安装包。您可以执行以下指令安装Docker。关于安装Docker的更多指导内容参见Docker官方文档。 curl -fsSL get.docker.com -o get-docker.sh sh get-docker.sh 如果docker images命令可以执行成功,表示Docker已安装,此步骤可跳过。
本教程案例是基于ModelArts Standard运行的,需要购买并开通ModelArts专属资源池和OBS桶。 准备数据 准备训练数据,可以用本案使用的数据集,也可以使用自己准备的数据集。 准备权重 准备所需的权重文件。 准备代码 准备AscendSpeed训练代码。 准备镜像 准备训练模型适用的容器镜像。
登录ModelArts管理控制台,在左侧菜单栏中选择“资产管理 >数据集”,进入“数据集”管理页面。 在数据集所在行,单击操作列的“导入”。 或者,您可以单击数据集名称,进入数据集“概览”页,在页面右上角单击“导入”。 在“导入”对话框中,参考如下说明填写参数,然后单击“确定”。 “数据来源”:“本地上传”
在本地PC的hosts文件中配置域名和IP地址的对应关系。 三、网络代理设置 如果用户使用的网络有代理设置要求,请检查代理配置是否正确。也可以使用手机热点网络连接进行测试排查。 检查代理配置是否正确。 图2 PyCharm网络代理设置 四、AK/SK不正确 获取到的AK/SK信息
此参数。 表2 real-time config结构 参数 参数类型 描述 model_id String 模型ID。“model_id”可以通过查询模型列表或者ModelArts管理控制台获取。 model_name String 模型名称。 model_version String
线带宽不可以这么计算。 如果Tree算法算出来的总线带宽相当于是相对Ring算法的性能加速。算法计算总耗时减少了,所以用公式算出来的总线带宽也增加了。理论上Tree算法是比Ring算法更优的,但是Tree算法对网络的要求比Ring高,计算可能不太稳定。 Tree算法可以用更少的数据通信量完成all
必选:固定子目录名称,用于放置模型相关文件 │ │ ├──<<自定义Python包>> 可选:用户自有的Python包,在模型推理代码中可以直接引用 │ │ ├──mnist_mlp.pt 必选,pytorch模型保存文件,保存为“state_dict”,存有权重变量等信息。
时间范围:可选择查询最近七天内任意时间段的操作事件。 在需要查看的事件左侧,单击展开该事件的详细信息。 单击需要查看的事件“操作”列的“查看事件”,可以在弹窗中查看该操作事件结构的详细信息。 更多关于云审计服务事件结构的信息,请参见《云审计服务用户指南》。 父主题: 使用CTS审计ModelArts服务
#输入python并回车,进入python环境 python 然后参考文件传输进行OBS传输操作。 下载Notebook中的文件至本地 在Notebook中开发的文件,可以下载至本地。在本地IDE的Project目录下的Notebook2.0工程单击右键,单击“Download...”将文件下载到本地。 图2
'*.zip') unzip_data_path = os.path.join(TEMP_CACHE_PATH, 'unzip') #也可以采用zipfile等Python包来做解压 os.system('unzip '+ zip_data_path + ' -d ' + unzip_data_path)
数据生命周期与训练作业生命周期相同,当训练作业运行结束以后“/cache”目录下面所有内容会被清空,腾出空间,供下一次训练作业使用。因此,可以在训练过程中将数据从OBS复制到“/cache”目录,然后每次从“/cache”目录读取数据,直到训练结束。训练结束以后“/cache”目录的内容会自动被清空。
"image_colorfulness": false } } 根据响应可以了解智能标注任务详情,其中“progress”为“30”表示当前任务进度为30%,“status”为“1”表示任务状态为在运行中。 待智能标注任务完成后,调用查询智能标注的样本列表接口可以查看标注结果。 请求消息体: URI格式:GET
[root@Server-ddff ~]# 发现和当前内核一致,因此即使reboot也不会更改服务器的内核版本。 若希望升级指定的操作系统内核,也可以执行grub2-set-default进行设置默认启动内核版本。但操作系统内核升级可能带来的问题。例如在操作系统内核4.18.0-147.5
r安装包。您可以使用以下指令安装Docker。关于安装Docker的更多指导内容参见Docker官方文档。 curl -fsSL get.docker.com -o get-docker.sh sh get-docker.sh 如果docker images命令可以执行成功,表示Docker已安装,此步骤可跳过。
model_name="tensorflow_mlp_mnist_local_infer") 本地模型创建好后,可部署为本地服务。 本地模型创建完,可以调用接口发布模型。 1 model.publish_model(obs_location=obs_location) 指定参数“obs_
( blocksize,系统默认 4096B。总共有三种大小:1024B、2048B、4096B) 创建文件越快,越容易触发。 处理方法 可以参照日志提示"write line error"文档进行修复。 如果是分布式作业有的节点有错误,有的节点正常,建议提工单请求隔离有问题的节点。
对于获取用户Token接口,返回如图1所示的消息头。 其中“x-subject-token”就是需要获取的用户Token。有了Token之后,您就可以使用Token认证调用其他API。 图1 获取用户Token响应消息头 响应消息体 响应消息体通常以结构化格式返回,与响应消息头中Cont
络来替代线性回归,用随机森林来代替决策树。 增加更多的特征,使输入数据具有更强的表达能力。 特征挖掘十分重要,尤其是具有强表达能力的特征,可以抵过大量的弱表达能力的特征。 特征的数量并非重点,质量才是,总之强表达能力的特征最重要。 能否挖掘出强表达能力的特征,还在于对数据本身以及具体应用场景的深刻理解,这依赖于经验。
Code开发环境中,右键单击实例名称,单击“Connect to Instance”,启动并连接Notebook实例。 Notebook实例状态处于“运行中”或“停止”状态都可以,如果Notebook实例是停止状态,连接Notebook时,VS Code插件会先启动实例再去连接。 图8 连接Notebook实例 或者单击实例名称,在VS
--workers:设置数据处理使用执行卡数量 / 启动的工作进程数。 --log-interval:是一个用于设置日志输出间隔的参数,表示输出日志的频率。在训练大规模模型时,可以通过设置这个参数来控制日志的输出。 微调数据集预处理参数说明 微调包含SFT和LoRA微调。数据集预处理脚本参数说明如下: --input:原始数据集的存放路径。