检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
server_index = index if server["device"]: device_count = len(server["device"]) # RANK_TABLE_FILE文件中,节点总数量为0,表示未获取到节点
"lspci | grep acce > {npu_log_path}/Device-info.log\n" \ "echo {echo_npu_device_log}\n" \
space left 日志文件的大小达到限制 日志提示"write line error" 日志提示“No space left on device” OOM导致训练作业失败 常见的磁盘空间不足的问题和解决办法 父主题: 训练作业
network = torch.nn.parallel.DistributedDataParallel(network, device_ids=device_ids, find_unused _parameters=True) File "/home/work/anaconda/lib/python3
处理ModelArts数据集中的数据 数据处理场景介绍 创建ModelArts数据校验任务 创建ModelArts数据清洗任务 创建ModelArts数据选择任务 创建ModelArts数据增强任务 管理和查看数据处理任务 父主题: 数据准备与处理
ModelArts训练作业运行时,日志中遇到如下报错,导致数据无法复制至容器中。 OSError:[Errno 28] No space left on device 原因分析 数据下载至容器的位置空间不足。 处理方法 请排查是否将数据下载至“/cache”目录下,GPU规格资源的每个节点会有一个“
将废弃)。 device_id 昇腾系列AI处理器的Physical ID。 device_type 昇腾系列AI处理器类型。 gpu_uuid 节点上GPU的UUID。 gpu_index 节点上GPU的索引。 gpu_type 节点上GPU的型号。 device_name i
cudaCheckError() failed : no kernel image is available for execution on the device 原因分析 因为编译的时候需要设置setup.py中编译的参数arch和code和电脑的显卡匹配。 解决方法 对于GP Vnt1的显卡,GPU算力为-gencode
必须修改。指定输出目录。训练过程中生成的模型参数和日志文件将保存在这个目录下。用户根据自己实际要求适配。 per_device_train_batch_size 1 指定每个设备的训练批次大小 gradient_accumulation_steps 8 可修改。指定梯度累积的步数,这可
推理性能测试 本章节介绍如何进行推理性能测试,建议在Notebook的JupyterLab中另起一个Terminal,执行benchmark脚本进行性能测试。如果需要在生产环境中进行推理性能测试,请通过调用接口的方式进行测试。 约束限制 创建在线服务时,每秒服务流量限制默认为10
推理性能测试 本章节介绍如何进行推理性能测试,建议在Notebook的JupyterLab中另起一个Terminal,执行benchmark脚本进行性能测试。若需要在生产环境中进行推理性能测试,请通过调用接口的方式进行测试。 约束限制 创建在线服务时,每秒服务流量限制默认为100
在ModelArts中调整模型后,部署新版本模型能否保持原API接口不变? ModelArts提供多版本支持和灵活的流量策略,您可以通过使用灰度发布,实现模型版本的平滑过渡升级。修改服务部署新版本模型或者切换模型版本时,原服务预测API不会变化。 调整模型版本的操作可以参考如下的步骤。
推理性能测试 本章节介绍如何进行推理性能测试,建议在Notebook的JupyterLab中另起一个Terminal,执行benchmark脚本进行性能测试。如果需要在生产环境中进行推理性能测试,请通过调用接口的方式进行测试。 约束限制 创建在线服务时,每秒服务流量限制默认为10
推理性能测试 本章节介绍如何进行推理性能测试,建议在Notebook的JupyterLab中另起一个Terminal,执行benchmark脚本进行性能测试。如果需要在生产环境中进行推理性能测试,请通过调用接口的方式进行测试。 约束限制 创建在线服务时,每秒服务流量限制默认为10
推理性能测试 本章节介绍如何进行推理性能测试,建议在Notebook的JupyterLab中另起一个Terminal,执行benchmark脚本进行性能测试。如果需要在生产环境中进行推理性能测试,请通过调用接口的方式进行测试。 约束限制 创建在线服务时,每秒服务流量限制默认为10
推理性能测试 本章节介绍如何进行推理性能测试,建议在Notebook的JupyterLab中另起一个Terminal,执行benchmark脚本进行性能测试。若需要在生产环境中进行推理性能测试,请通过调用接口的方式进行测试。 约束限制 创建在线服务时,每秒服务流量限制默认为100
必须修改。指定输出目录。训练过程中生成的模型参数和日志文件将保存在这个目录下。用户根据自己实际要求适配。 per_device_train_batch_size 1 指定每个设备的训练批次大小 gradient_accumulation_steps 8 可修改。指定梯度累积的步数,这可
必须修改。指定输出目录。训练过程中生成的模型参数和日志文件将保存在这个目录下。用户根据自己实际要求适配。 per_device_train_batch_size 1 指定每个设备的训练批次大小 gradient_accumulation_steps 8 可修改。指定梯度累积的步数,这可
通过VPC高速访问通道的方式访问在线服务 背景说明 访问在线服务的实际业务中,用户可能会存在如下需求: 高吞吐量、低时延 TCP或者RPC请求 因此,ModelArts提供了VPC直连的高速访问通道功能以满足用户的需求。 使用VPC直连的高速访问通道,用户的业务请求不需要经过推理
ModelArts Standard推理服务支持VPC直连的高速访问通道配置 背景说明 访问在线服务的实际业务中,用户可能会存在如下需求: 高吞吐量、低时延 TCP或者RPC请求 因此,ModelArts提供了VPC直连的高速访问通道功能以满足用户的需求。 使用VPC直连的高速访