检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
from_pretrained(model_id, device_map="auto", quantization_config=gptq_config) 您还可以使用save_pretrain()方法在本地保存您的量化模型。如果模型是用device_map参数量化的,请确保在保存之前将整个
from_pretrained(model_id, device_map="auto", quantization_config=gptq_config) 您还可以使用save_pretrain()方法在本地保存您的量化模型。如果模型是用device_map参数量化的,请确保在保存之前将整个
from_pretrained(model_id, device_map="auto", quantization_config=gptq_config) 您还可以使用save_pretrain()方法在本地保存您的量化模型。如果模型是用device_map参数量化的,请确保在保存之前将整个
from_pretrained(model_id, device_map="auto", quantization_config=gptq_config) 您还可以使用save_pretrain()方法在本地保存您的量化模型。如果模型是用device_map参数量化的,请确保在保存之前将整个
from_pretrained(model_id, device_map="auto", quantization_config=gptq_config) 您还可以使用save_pretrain()方法在本地保存您的量化模型。如果模型是用device_map参数量化的,请确保在保存之前将整个
from_pretrained(model_id, device_map="auto", quantization_config=gptq_config) 您还可以使用save_pretrain()方法在本地保存您的量化模型。如果模型是用device_map参数量化的,请确保在保存之前将整个
from_pretrained(model_id, device_map="auto", quantization_config=gptq_config) 您还可以使用save_pretrain()方法在本地保存您的量化模型。如果模型是用device_map参数量化的,请确保在保存之前将整个
e-Instruct" 2)若量化Deepseek-V2-236B模型,请将num_gpus改为8; device_map = calculate_offload_device_map( MODEL_ID, reserve_for_hessians=True,
-Instruct" 2)如果量化Deepseek-V2-236B模型,请将num_gpus改为8; device_map = calculate_offload_device_map( MODEL_ID, reserve_for_hessians=True,
ascendfactory-cli train <cfgs_yaml_file> <model_name> <exp_name> # 指定设备卡数,如2卡 ASCEND_RT_VISIBLE_DEVICES=0,1 ascendfactory-cli train <cfgs_yaml_file>
from_pretrained(model_id, device_map="auto", quantization_config=gptq_config) 您还可以使用save_pretrain()方法在本地保存您的量化模型。如果模型是用device_map参数量化的,请确保在保存之前将整个
from_pretrained(model_id, device_map="auto", quantization_config=gptq_config) 您还可以使用save_pretrain()方法在本地保存您的量化模型。如果模型是用device_map参数量化的,请确保在保存之前将整个
from_pretrained(model_id, device_map="auto", quantization_config=gptq_config) 您还可以使用save_pretrain()方法在本地保存您的量化模型。如果模型是用device_map参数量化的,请确保在保存之前将整个
from_pretrained(model_id, device_map="auto", quantization_config=gptq_config) 您还可以使用save_pretrain()方法在本地保存您的量化模型。如果模型是用device_map参数量化的,请确保在保存之前将整个
from_pretrained(model_id, device_map="auto", quantization_config=gptq_config) 您还可以使用save_pretrain()方法在本地保存您的量化模型。如果模型是用device_map参数量化的,请确保在保存之前将整个
"param/learning_rate" : 0.05512301741232006 }, "0.0625", "tensor(0.0754, device='cuda:0', requires_grad=True)", "ae544174", "2", "0.0625" ], [ "True"
space left 日志文件的大小达到限制 日志提示"write line error" 日志提示“No space left on device” OOM导致训练作业失败 常见的磁盘空间不足的问题和解决办法 父主题: 训练作业
device = torch.device('cuda') model.load_state_dict(torch.load(model_path, map_location="cuda:0")) else: device = torch
推理性能测试 本章节介绍如何进行推理性能测试,建议在Notebook的JupyterLab中另起一个Terminal,执行benchmark脚本进行性能测试。如果需要在生产环境中进行推理性能测试,请通过调用接口的方式进行测试。 约束限制 创建在线服务时,每秒服务流量限制默认为10
推理性能测试 本章节介绍如何进行推理性能测试,建议在Notebook的JupyterLab中另起一个Terminal,执行benchmark脚本进行性能测试。若需要在生产环境中进行推理性能测试,请通过调用接口的方式进行测试。 约束限制 创建在线服务时,每秒服务流量限制默认为100