检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
回归分类数据 csv 训练预测大模型所需数据量 训练预测大模型时,所需的数据通常为表格格式,即由行和列组成的扁平化数据。具体要求如下: 行:每行代表一个样本。每行与其他行具有相同的列,并且顺序相同,这些行通常按照某种特定顺序排列。 列:每列表示一种特征。每列的数据类型应保持一致,不同列可以具有不同的数据类型。
可以通过重试机制解决,在代码里检查返回值,碰到这个并发错误可以延时一小段时间(如2-5s)重试请求;也可以后端检查上一个请求结果,上一个请求返回之后再发送下一个请求,避免请求过于频繁。 请与技术支持确认,API是否已完成部署。 APIG.0301 Incorrect IAM authentication
达到较好的效果。 业务逻辑的复杂性 判断任务场景的业务逻辑是否符合通用逻辑。如果场景中的业务逻辑较为简单、通用且易于理解,那么调整提示词是一个可行的方案。 例如,对于一般的常规问题解答等场景,可以通过在提示词中引导模型学习如何简洁明了地作答。 如果场景涉及较为复杂、专业的业务逻辑
步骤1:创建工作流 创建一个新的工作流。 步骤2:配置开始节点 设定工作流的起始点。 步骤3:配置大模型节点 将大模型节点加入工作流,用于处理复杂的自然语言理解或生成任务。 步骤4:配置意图识别节点 配置该节点来分析用户输入,识别其意图,以便后续处理。 步骤5:配置提问器节点 配置一个提问器节点
身份认证,获得操作API的权限。 Token的有效期为24小时,需要使用一个Token鉴权时,可以先缓存,避免频繁调用。 如果您的华为云账号已升级为华为账号,将不支持获取账号Token。建议为您自己创建一个IAM用户,获取IAM用户的Token。 获取Token方法: Token
多轮问答场景的输入(“context”字段)请务必使用“[问题, 回答, 问题, 回答, 问题, ……]”的方式来构造,若您的数据是同一个角色连续多次对话的“多轮问题”,可以将同一个角色的对话采用某个分隔符拼接到一个字符串中。例如: 原始对话示例: A:xxx号话务员为您服务! A:先生您好,有什么可以帮助您的? B:你好,是这样的
有庞大复杂的城市事件类别体系,包含了繁多细碎的事项类别,如垃圾暴露、道路破损、围栏破损等,一个城市一般有几百种事件类别。同时,不同城市可能还有不同的标准,某城市关注某一些特定事件类别,另一个城市又关注另一些特定事件类别。因此,城市政务场景面临着众多碎片化AI需求场景。 传统的AI
其中,单个cls类别目录下的每个三级目录为一个样本,例如cls1文件的样本为aa和bb。 所有样本文件夹(如 aa)包含的图片数量相等,例如cls1样本aa和bb、cls1样本aa和cls2的样本cc。 每个样本文件夹(如 aa)可以视为一个视频片段,其中每张图片代表视频的一个帧,将这些帧作为一个序列来学习视
创建应用后,需要撰写提示词(Prompt),为应用设定人设、能力、核心技能、执行步骤。 应用会根据盘古NLP大模型对提示词的理解,来响应用户问题。因此,一个好的提示词可以让模型更好地理解并执行任务,应用效果与提示词息息相关。 配置Prompt Builder步骤如下: 在“Prompt builder
{"system":"你是一个机智幽默问答助手","context":"你好,请介绍自己","target":"哈哈,你好呀,我是你的聪明助手。"} csv格式:csv文件的第一列对应system,第二三列分别对应context、target。 "你是一个机智幽默问答助手","你好,请介绍自己"
都会被模型单独处理。较大的patch_size意味着模型主干部分的一个网格代表更大范围的区域,但局部的细节信息可能会被忽略,较小的patch_size则相反。需要注意: 数据格式为[int,int,int],第一个值需要大于0小于等于4,第二、三个参数都需要大于1小于等于20。
定人设、目标、核心技能、执行步骤。 应用会根据盘古NLP大模型对提示词的理解,来选择使用插件、工作流或知识库,响应用户问题。因此,一个好的提示词可以让模型更好地理解并执行任务,应用效果与提示词息息相关。 配置Prompt Builder步骤如下: 在“Prompt builder
如何分析大模型输出错误回答的根因 大模型的输出过程通常是一个黑盒,涉及数以亿计甚至千亿计的参数计算,虽然这些参数共同作用生成输出,但具体的决策机制并不透明。 可以通过在提示词中引导模型输出思考过程,或者在模型输出后追问模型,帮助我们分析错误的根因。例如: “我注意到你犯了xxx的错误,请解释得出该结论的原因。”
等操作,并对提示词进行保存和管理。 表1 功能说明 功能 说明 提示词工程任务管理 提示词工程平台以提示词工程任务为管理维度,一个任务代表一个场景或一个调优需求,在提示词工程任务下可以进行提示词的调优、比较和评估。 提示词工程任务管理支持工程任务的创建、查询、修改、删除。 提示词撰写
在视频中标注场景主题类别。每个视频片段只对应一个分类标签,分类项不再进一步细分或包含更多的层次结构。 图1 单层级分类示例-视频主题分类 多层级分类:多层级分类允许对同一视频内容进行更复杂的分类,并通过层次结构展现。通常会先从一个大类别开始,然后逐渐向下细分,直到达到所需的标注
Agent开发 Agent开发平台为开发者提供了一个全面的工具集,帮助您高效地开发、优化和部署应用智能体。无论您是新手还是有经验的开发者,都能通过平台提供的提示词工程、插件扩展、灵活的工作流设计和全链路调测功能,快速实现智能体应用的开发与落地,加速行业AI应用的创新与应用。 对于零码开发者(无代码开发经验的用户):
为什么微调后的盘古大模型的回答中会出现乱码 当您将微调的模型部署以后,输入一个与目标任务同属的问题,模型生成的结果中出现了其他语言、异常符号、乱码等字符。这种情况可能是由于以下几个原因导致的,建议您依次排查: 数据质量:请检查训练数据中是否存在包含异常字符的数据,可以通过规则进行清洗。
为什么微调后的盘古大模型的回答会异常中断 当您将微调的模型部署以后,输入一个与目标任务同属的问题,模型生成的结果不完整,出现了异常截断。这种情况可能是由于以下几个原因导致的,建议您依次排查: 推理参数设置:请检查推理参数中的“最大Token限制”参数的设置,适当增加该参数的值,可
二者区别详见表3。 表3 预训练、微调训练类型区别 训练方式 训练目的 训练数据 模型效果 应用场景举例 预训练 关注通用性:预训练旨在让模型学习广泛的通用知识,建立词汇、句法和语义的基础理解。通过大规模的通用数据训练,模型可以掌握丰富的语言模式,如语言结构、词义关系和常见的句型。
为什么微调后的盘古大模型评估结果很好,但实际场景表现很差 当您在微调过程中,发现模型评估的结果很好,一旦将微调的模型部署以后,输入一个与目标任务同属的问题,回答的结果却不理想。这种情况可能是由于以下几个原因导致的,建议您依次排查: 测试集质量:请检查测试集的目标任务和分布与实际场