检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
方便用户查看,主要包括以下类型。 路径相关环境变量 分布式训练作业环境变量 NCCL(Nvidia Collective multi-GPU Communication Library)环境变量 OBS环境变量 PIP源环境变量 API网关地址环境变量 作业元信息环境变量 约束限制
创建模型不同方式的场景介绍 AI开发和调优往往需要大量的迭代和调试,数据集、训练代码或参数的变化都可能会影响模型的质量,如不能统一管理开发流程元数据,可能会出现无法重现最优模型的现象。 ModelArts的模型可导入所有训练生成的元模型、上传至对象存储服务(OBS)中的元模型和容器镜像中的元模型,可对所有迭代和调试的模型进行统一管理。
使用benchmark-tools访问推理服务时,输入输出的token和大于max_model_len,服务端返回报错Response payload is not completed,见图2。 再次设置输入输出的token和小于max_model_len访问推理服务,服务端响应200,见图3。
附录:大模型推理常见问题 问题1:在推理预测过程中遇到NPU out of memory 解决方法:调整推理服务启动时的显存利用率,将--gpu-memory-utilization的值调小。 问题2:在推理预测过程中遇到ValueError:User-specified max_model_len
载文件至本地”时,只能使用JupyterLab页面提供的功能。 如需使用大文件上传和下载的功能,建议您前往Notebook,创建一个收费的实例进行使用。 切换规格。 CodeLab支持CPU和GPU两种规格,在右侧区域,单击切换规格,修改规格类型。 图3 切换规格 资源监控。 在
Lite Server算力资源和镜像版本配套关系 Lite Server提供多种NPU、GPU镜像,您可在购买前了解当前支持的镜像及对应详情。 NPU Snt9裸金属服务器支持的镜像详情 镜像名称:ModelArts-Euler2.8_Aarch64_Snt9_C78 表1 镜像详情
件 方法一:在Notebook中通过Moxing上传下载OBS文件 MoXing是ModelArts自研的分布式训练加速框架,构建于开源的深度学习引擎TensorFlow、PyTorch等之上,使用MoXing API可让模型代码的编写更加简单、高效。 MoXing提供了一套文件对象API,可以用来读写OBS文件。
500G*0.25 GPU-0.5卡 500G*0.5 GPU-单卡 500G GPU-双卡 500G*2 GPU-四卡 500G*4 GPU-八卡 3T 昇腾-单卡 500G 昇腾-双卡 500G*2 昇腾-四卡 500G*4 昇腾-八卡 3T CPU -- 父主题: Standard
2.py GPU和NPU训练脚本中的参数要保持一致,除了参数dtype。NPU环境下,dtype="fp16",GPU环境下,dtype="bf16"。 基于NPU训练后的权重文件和GPU训练后的权重文件,对比推理精度。推理精度对齐流程和训练精度对齐流程相同,先在GPU固定推理的随机数。
initialization:CUDA unknown error 问题现象 在Vnt1 GPU裸金属服务器(Ubuntu18.04系统),安装NVIDIA 470+CUDA 11.4后使用“nvidia-smi”和“nvcc - V”显示正确的安装信息,然后使用Pytorch下述命令验证cuda有效性:
卡顿无法执行,因为内核IO已经阻塞, 无法执行相关GPU命令,只能尝试释放D+进程。 处理方法 “nvidia-smi”是一个NVIDIA GPU监视器命令行工具,用于查看GPU的使用情况和性能指标,可以帮助用户进行GPU优化和故障排除。 但是建议在业务软件或训练算法中,避免频繁
ModelArts提供AI诊断功能,用户可以通过NCCl Test,测试节点GPU状态,并且测试多个节点间的通信速度。 操作步骤 单击资源池名称,进入资源池详情。 单击左侧“AI组件管理 > AI诊断”。 单击“诊断”,选择“日志上传路径”和NCCL Test节点,其余参数可保持默认值或根据实际需求修改。
deLab中能否使用昇腾卡进行训练? 有两种情况。 第一种,在ModelArts控制台的“总览”界面打开CodeLab,使用的是CPU或GPU资源,无法使用昇腾卡训练。 第二种,如果是AI Gallery社区的Notebook案例,使用的资源是ASCEND的,“Run in Mo
请及时检查,防止磁盘写满影响业务。推荐清理计算节点无效数据。 GPU GPU使用率 ma_node_gpu_util 该指标用于统计测量对象的GPU使用率。 百分比(Percent) 0~100% NA NA NA GPU显存容量 ma_node_gpu_mem_total_megabytes 该指标用于统计测量对象的显存容量。
秒(Seconds) ≥0 NA NA NA GPU GPU使用率 ma_node_gpu_util 该指标用于统计测量对象的GPU使用率。 百分比(Percent) 0~100% NA NA NA GPU显存容量 ma_node_gpu_mem_total_megabytes 该指标用于统计测量对象的显存容量。
Standard上运行GPU训练任务 本案例介绍了如何使用ModelArts Standard专属资源池提供的计算资源,结合SFS和OBS存储,在ModelArts Standard的训练环境中开展单机单卡、单机多卡、多机多卡分布式训练。 面向熟悉代码编写和调测的AI工程师,同时了解SFS和OBS云服务
镜像中的软件库和ModelArts的软件库相匹配。您镜像中的软件版本需要满足以下要求: NCCL版本 ≥ 2.7.8。 OFED版本 ≥ MLNX_OFED_LINUX-5.4-3.1.0.0。 CUDA版本需要参考专属资源池的GPU驱动版本,自主进行适配,GPU驱动版本可在专属资源池详情页面查看。
附录:基于vLLM不同模型推理支持最小卡数和最大序列说明 基于vLLM(v0.5.0)部署推理服务时,不同模型推理支持的最小昇腾卡数和对应卡数下的max-model-len长度说明,如下面的表格所示。 以下值是在gpu-memory-utilization为0.9时测试得出,为服
附录:基于vLLM不同模型推理支持最小卡数和最大序列说明 基于vLLM(v0.6.0)部署推理服务时,不同模型推理支持的最小昇腾卡数和对应卡数下的max-model-len长度说明,如下面的表格所示。 以下值是在gpu-memory-utilization为0.9时测试得出,为服
附录:基于vLLM不同模型推理支持最小卡数和最大序列说明 基于vLLM(v0.6.0)部署推理服务时,不同模型推理支持的最小昇腾卡数和对应卡数下的max-model-len长度说明,如下面的表格所示。 以下值是在gpu-memory-utilization为0.9时测试得出,为服