检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
6 PyTorch版本:2.1.0 确保容器可以访问公网。 文档更新内容 6.3.909版本相对于6.3.908版本新增如下内容: 文档中新增对Llama3.1的适配。 ModelLink框架和MindSpeed已升级到最新版本。 训练支持的模型列表 本方案支持以下模型的训练,如表1所示。
Visual Studio Code (VS Code) 是一个流行的代码编辑器,它支持多种编程语言和开发环境。支持通过VS Code连接和使用Jupyter Notebook。 当用户创建完成支持SSH的Notebook实例后,使用VS Code的开发者可以通过以下方式连接到开发环境中:
确保容器可以访问公网。 文档更新内容 6.3.910版本相对于6.3.909版本新增如下内容: 文档中新增对Qwen2.5的适配(包括0.5B、7B, 14B, 32B, and 72B),支持sft、lora、预训练。 文档中新增对Llama3.2的适配(包括1B和3B),支持sft、lora、预训练。
页面,开启“自动重启”开关。训练环境预检测失败、或者训练容器硬件检测故障、或者训练作业失败时会自动重新下发并运行训练作业。 PyTorch版reload ckpt PyTorch模型保存有两种方式。 仅保存模型参数 state_dict = model.state_dict() torch
5.0版本。 仅支持FP16和BF16数据类型推理。 本案例仅支持在专属资源池上运行。 专属资源池驱动版本要求23.0.6。 支持的模型列表和权重文件 本方案支持vLLM的v0.5.0版本。不同vLLM版本支持的模型列表有差异,具体如表1所示。 表1 支持的模型列表和权重获取地址
确保集群可以访问公网。 文档更新内容 6.3.910版本相对于6.3.909版本新增如下内容: 文档中新增对Qwen2.5的适配(包括0.5B、7B, 14B, 32B, and 72B),支持sft、lora、预训练。 文档中新增对Llama3.2的适配(包括1B和3B),支持sft、lora、预训练。
s Lite Server上的预训练和全量微调方案。训练框架使用的是ModelLink。 本方案目前仅适用于部分企业客户,完成本方案的部署,需要先联系您所在企业的华为方技术支持。 约束限制 本文档适配昇腾云ModelArts 6.3.911版本,请参考表1获取配套版本的软件包,请严格遵照版本配套关系使用本文档。
Cluster。推荐使用“西南-贵阳一”Region上的资源和Ascend Snt9B。 支持的模型列表和权重文件 本方案支持vLLM的v0.6.0版本。不同vLLM版本支持的模型列表有差异,具体如表1所示。 表1 支持的模型列表和权重获取地址 序号 模型名称 是否支持fp16/bf16推理
推理部署使用的服务框架是vLLM。vLLM支持v0.5.0版本。 仅支持FP16和BF16数据类型推理。 本案例仅支持在专属资源池上运行。 专属资源池驱动版本要求23.0.6。 适配的CANN版本是cann_8.0.rc3。 支持的模型列表和权重文件 本方案支持vLLM的v0.5.0版本。不同vLLM版本支持的模型列表有差异,具体如表1所示。
镜像适配的Cann版本是cann_8.0.rc3,驱动版本是23.0.6。 确保集群可以访问公网。 文档更新内容 6.3.911版本相对于6.3.910版本新增如下内容: 文档中新增在数据预处理时,支持LLama-Factory格式的模板: 支持Alpaca格式的数据,DATA_TYPE
配套关系使用本文档。 资源规格推荐使用“西南-贵阳一”Region上的DevServer和昇腾Snt9B资源。 推理部署使用的服务框架是vLLM。vLLM支持v0.4.2版本。 支持FP16和BF16数据类型推理。 DevServer驱动版本要求23.0.5。 资源规格要求 本文档中的模型运行环境是ModelArts
件为空。配置文件是一个YAML格式的文件,里面的参数就是命令的option参数。此外,如果用户在命令行中同时指定YAML_FILE配置文件和option参数,命令行中指定的option参数的值将会覆盖配置文件相同的值。 $ma-cli ma-job submit -h Usage:
推理部署使用的服务框架是vLLM。vLLM支持v0.6.0版本。 仅支持FP16和BF16数据类型推理。 本案例仅支持在专属资源池上运行。 专属资源池驱动版本要求23.0.6。 适配的CANN版本是cann_8.0.rc3。 支持的模型列表和权重文件 本方案支持vLLM的v0.6.0版本。不同vLLM版本支持的模型列表有差异,具体如表1所示。
本案例仅支持在专属资源池上运行,确保专属资源池可以访问公网。 文档更新内容 6.3.909版本相对于6.3.908版本新增如下内容: 文档中新增对Llama3.1的适配。 ModelLink框架和MindSpeed已升级到最新版本。 支持的模型列表 本方案支持以下模型的训练,如表1所示。
0.rc3,驱动版本是23.0.6。 本案例仅支持在专属资源池上运行。 文档更新内容 6.3.908版本相对于6.3.907版本新增如下内容: 文档和代码中新增对mistral和mixtral模型的适配,并添加训练推荐配置。 文档准备镜像步骤中,仅提供:直接使用基础镜像方案、EC
本案例仅支持在专属资源池上运行,确保专属资源池可以访问公网。 文档更新内容 6.3.909版本相对于6.3.908版本新增如下内容: 文档中新增对Llama3.1的适配。 ModelLink框架和MindSpeed已升级到最新版本。 支持的模型列表 本方案支持以下模型的训练,如表1所示。
适配的CANN版本是cann_8.0.rc3,驱动版本是23.0.6。 本案例仅支持在专属资源池上运行,确保专属资源池可以访问公网。 文档更新内容 6.3.912版本是第一次发布 支持的模型列表 本方案支持以下模型的训练,如表1所示。 表1 支持的模型列表 序号 支持模型 支持模型参数量 权重文件获取地址
配套关系使用本文档。 资源规格推荐使用“西南-贵阳一”Region上的DevServer和昇腾Snt9B资源。 推理部署使用的服务框架是vLLM。vLLM支持v0.5.0版本。 支持FP16和BF16数据类型推理。 DevServer驱动版本要求23.0.6。 资源规格要求 本文档中的模型运行环境是ModelArts
安装nerdctl工具。nerdctl是containerd的一个客户端命令行工具,使用方式和docker命令基本一致,可用于后续镜像构建步骤中。 # 下载 nerdctl 工具,注意使用的是1.7.6 arm64版本 wget https://github.com/containerd/ne
x版本的Python版本,推荐使用3.7.x版本。 使用场景 ModelArts SDK目前仅支持在ModelArts开发环境Notebook和本地PC两种环境使用。 ModelArts SDK不支持在训练作业和在线服务中使用。 ModelArts SDK已经集成在ModelArts