检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
GPU插件检查异常处理 检查项内容 检查到本次升级涉及GPU插件,可能影响新建GPU节点时GPU驱动的安装。 解决方案 由于当前GPU插件的驱动配置由您自行配置,需要您验证两者的兼容性。建议您在测试环境验证安装升级目标版本的GPU插件,并配置当前GPU驱动后,测试创建节点是否正常使用。
CCE AI套件(NVIDIA GPU) 插件介绍 CCE AI套件(NVIDIA GPU)插件是支持在容器中使用GPU显卡的设备管理插件,集群中使用GPU节点时必须安装本插件。 字段说明 表1 参数描述 参数 是否必选 参数类型 描述 basic 是 object 插件基础配置参数。
如何配置Pod使用GPU节点的加速能力? 问题描述 我已经购买了GPU节点,但运行速度还是很慢,请问如何配置Pod使用GPU节点的加速能力。 解答 方案1: 建议您将集群中GPU节点的不可调度的污点去掉,以便GPU插件驱动能够正常安装,同时您需要安装高版本的GPU驱动。 如果您的集
使用dcgm-exporter监控GPU指标 应用场景 集群中包含GPU节点时,需要了解GPU应用使用节点GPU资源的情况,例如GPU利用率、显存使用量、GPU运行的温度、GPU的功率等。在获取GPU监控指标后,用户可根据应用的GPU指标配置弹性伸缩策略,或者根据GPU指标设置告警规则。本文基于开源Prometheus和DCGM
适配OS Ubuntu22.04 GPU驱动目录自动挂载优化 1.2.24 v1.19 v1.21 v1.23 v1.25 节点池支持配置GPU驱动版本 支持GPU指标采集 1.2.20 v1.19 v1.21 v1.23 v1.25 设置插件别名为gpu 1.2.17 v1.15 v1
GPU节点使用nvidia驱动启动容器排查思路 集群中的节点是否有资源调度失败的事件? 问题现象: 节点运行正常且有GPU资源,但报如下失败信息: 0/9 nodes are aviable: 9 insufficient nvida.com/gpu 排查思路: 确认节点标签是否已经打上nvidia资源。
其他服务CUDA版本也在这2个范围内 在GPU服务容器中发现一些新增的文件core.*,在以前的部署中没有出现过。 问题定位 GPU插件的驱动版本较低,客户单独下载驱动安装后正常。 客户工作负载中未声明需要gpu资源。 建议方案 节点安装了gpu-beta(gpu-device-plugin)插件后,会自动安装nv
name: 'cce-gpu' cce-gpu 结合CCE的GPU插件支持GPU资源分配,支持小数GPU配置。 说明: 1.10.5及以上版本的插件不再支持该插件,请使用xgpu插件。 小数GPU配置的前提条件为CCE集群GPU节点为共享模式,检查集群是否关闭GPU共享,请参见修改C
资源准备 在集群中添加GPU节点 登录CCE控制台,单击已创建的集群,进入集群控制台。 安装GPU插件。 在左侧导航栏中选择“插件管理”,在右侧找到gpu-beta(或gpu-device-plugin),单击“安装”。 在安装插件页面,设置插件关键参数。 Nvidia驱动:填写
GPU插件关键参数检查异常处理 检查项内容 检查CCE GPU插件中部分配置是否被侵入式修改,被侵入式修改的插件可能导致升级失败。 解决方案 使用kubectl连接集群。 执行以下命令获取插件实例详情。 kubectl get ds nvidia-driver-installer
Kubernetes默认GPU调度可以指定Pod申请GPU的数量,支持申请设置为小于1的数量,实现多个Pod共享使用GPU。 使用Kubernetes默认GPU调度 GPU虚拟化 GPU虚拟化能够动态对GPU设备显存与算力进行划分,单个GPU卡最多虚拟化成20个GPU虚拟设备。相对于静
GPU/NPU Pod重建风险检查异常处理 检查项内容 检查当前集群升级重启kubelet时,节点上运行的GPU/NPU业务容器是否可能发生重建,造成业务影响。 解决方案 请确保在业务影响可控的前提下(如业务低峰期)进行集群升级,以消减业务容器重建带来的影响; 如需帮助,请您提交工单联系运维人员获取支持。
Volcano调度器 插件介绍 Volcano 是一个基于 Kubernetes 的批处理平台,提供了机器学习、深度学习、生物信息学、基因组学及其他大数据应用所需要的而 Kubernetes 当下缺失的一系列特性。 字段说明 表1 参数描述 参数 是否必选 参数类型 描述 basic
Ubuntu内核与GPU驱动兼容性提醒 检查项内容 检查到集群中同时使用GPU插件和Ubuntu节点,提醒客户存在可能的兼容性问题。当Ubuntu内核版本在5.15.0-113-generic上时,GPU插件必须使用535.161.08及以上的驱动版本。 解决方案 您在升级后新创
自分配到2个GPU。但是TFJob1和TFJob2均需要4块GPU卡才能运行起来。这样TFJob1和TFJob2处于互相等待对方释放资源,这种死锁情况造成了GPU资源的浪费。 亲和调度问题 分布式训练中,Ps和Worker存在很频繁的数据交互,所以Ps和Worker之间的带宽直接影响了训练的效率。
异构资源配置 GPU配置 GPU虚拟化 CCE GPU虚拟化采用自研xGPU虚拟化技术,能够动态对GPU设备显存与算力进行划分,单个GPU卡最多虚拟化成20个GPU虚拟设备。相对于静态分配来说,虚拟化的方案更加灵活,最大程度保证业务稳定的前提下,可以完全由用户自己定义使用的GPU量,提高
节点亲和的规则只能影响Pod和节点之间的亲和,Kubernetes还支持Pod和Pod之间的亲和,例如将应用的前端和后端部署在一起,从而减少访问延迟。Pod亲和同样有requiredDuringSchedulingIgnoredDuringExecution和preferredDur
在支持AI,大数据等作业的时候提供了高精度的资源调度策略,例如在深度学习场景下计算效率非常重要。以TensorFlow计算为例,配置“ps”和“worker”之间的亲和性,以及“ps”与“ps”之间的反亲和性,可使“ps”和“worker”尽量调度到同一台节点上,从而提升“ps”和“worker”之间进行网络和数
在CCE集群中部署使用Tensorflow 资源准备 购买CCE集群,购买GPU节点并使用gpu-beta插件安装显卡驱动。 在集群下添加一个对象存储卷。 数据预置 从https://github.com/zalandoresearch/fashion-mnist下载数据。 获取
Kubernetes在调度工作负载时支持将节点作为亲和对象,将工作负载调度至具有指定标签和标签值的节点上。例如,某些节点支持使用GPU算力,则可以使用节点亲和调度,确保高性能计算的Pod最终运行在GPU节点上。 配置节点亲和调度策略 您可以通过不同的方式配置节点亲和性调度策略,将Pod调度到满足条件的节点。