检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
安装并配置GPU驱动 背景信息 对于使用GPU的边缘节点,在纳管边缘节点前,需要安装并配置GPU驱动。 IEF当前支持Nvidia Tesla系列P4、P40、T4等型号GPU,支持CUDA Toolkit 8.0至10.0版本对应的驱动。 操作步骤 安装GPU驱动。 下载GPU驱动,推荐驱动链接:
安装并配置GPU驱动 背景信息 对于使用GPU的边缘节点,在纳管边缘节点前,需要安装并配置GPU驱动。 IEF当前支持Nvidia Tesla系列P4、P40、T4等型号GPU,支持CUDA Toolkit 8.0至10.0版本对应的驱动。 操作步骤 安装GPU驱动。 下载GPU驱动,推荐驱动链接:
方法一:重新启动,选择安装GPU驱动时的内核版本,即可使用GPU驱动。 在云服务器操作列下单击“远程登录 > 立即登录”。 单击远程登录操作面板上方的“发送CtrlAltDel”按钮,重启虚拟机。 然后快速刷新页面,按上下键,阻止系统继续启动,选择安装GPU驱动时的内核版本进入系统
com/gpu等价于开启虚拟化GPU显存隔离,可以和显存隔离模式(即设置volcano.sh/gpu-mem.128Mi资源)的工作负载共用一张GPU卡,但不支持和算显隔离模式负载(即同时设置volcano.sh/gpu-mem.128Mi和volcano.sh/gpu-core
本节操作介绍GPU云服务器安装Tesla驱动及CUDA工具包的操作步骤。 当前已支持使用自动化脚本安装GPU驱动,建议优先使用自动安装方式,脚本获取以及安装指导请参考(推荐)自动安装GPU加速型ECS的GPU驱动(Linux)和(推荐)自动安装GPU加速型ECS的GPU驱动(Windows)。
),打开该文件后会出现一个Notebook Editor,可以在里面编辑和运行cell。 父主题: 基于CodeArts IDE Online、TensorFlow和Jupyter Notebook开发深度学习模型
54.03版本的GPU驱动。 容器运行时 containerd 插件 集群中需要同时安装以下插件: volcano插件:1.10.1及以上版本 gpu-device-plugin插件:2.0.0及以上版本 步骤一:纳管并标记GPU节点 如果您的集群中已有符合基础规划的GPU节点,您可以跳过此步骤。
1*ascend-snt9b|ARM 24核 192GB Snt9b单卡规格,配搭ARM处理器,适合深度学习场景下的模型训练和调测 ModelArts提供了面向推理迁移工作的预置镜像,其中包含了最新商用版驱动、昇腾软件开发库,迁移工具链等。预置镜像可以做到即开即用,用户也可以基于预置镜像构建自定义环境内容。
合适的NVIDIA驱动版本。 GPU驱动支持列表 当前GPU驱动支持列表仅针对1.2.28及以上版本的GPU插件。 如果您需要安装最新版本的GPU驱动,请将您的GPU插件升级到最新版本。 表1 GPU驱动支持列表 GPU型号 支持集群类型 机型规格 操作系统 Huawei Cloud
导的讨论范围中。 已完成迁移环境准备,且代码、预训练模型、数据等训练必需内容已经上传到环境中。 约束和限制 安装插件后,大部分能力能够对标在GPU上的使用,但并不是所有行为和GPU上是一一对应的。例如在torch_npu下,当PyTorch版本低于2.1.0时,一个进程只能操作一
train_labels, epochs=10) 父主题: 基于CodeArts IDE Online、TensorFlow和Jupyter Notebook开发深度学习模型
Gauge % GPU进程 GPU各进程编码使用率 - cce_gpu_decoder_utilization_process Gauge % GPU进程 GPU各进程解码使用率 - 内存指标 cce_gpu_memory_used Gauge bytes GPU卡 GPU显存使用量 说明:
thon三方库版本、模型源码等与标杆环境(GPU/CPU)设置的不一致导致,为了在定位过程中少走弯路,需要在定位前先对训练环境及代码做有效排查。此外,问题定位主要基于GPU环境和NPU环境上运行的过程数据做对比,所以需要分别准备GPU和NPU训练环境,大部分场景需要规模相同的训练
监控了哪些目标。 图2 查看监控目标 监控GPU指标 创建一个使用GPU的工作负载,等工作负载正常运行后,访问Prometheus,在“Graph”页面中,查看GPU指标。 关于GPU指标详情请参见GPU监控指标说明。 图3 查看GPU监控指标 访问Grafana Prometh
ess GPU的详细功能和优势。 传统GPU长驻使用方式存在许多问题,例如,需要提前规划好资源需求并容易造成资源浪费。而Serverless GPU则提供了一种更加灵活的方式来利用GPU计算资源,用户只需选择合适的GPU型号和计算资源规模,就可以帮助用户有效地解决GPU长驻使用方
模式下,GPU同时用于计算和图形。 仅在GPU服务器安装了GRID驱动时才可以切换至WDDM模式。 关于TCC和WDDM,了解更多。 方法二 登录GPU加速型云服务器。 下载gpu-Z并安装。 打开gpu-z,选择“Sensors”即可查看GPU使用情况。 图2 GPU使用率 父主题:
GPU调度概述 工作负载支持使用节点GPU资源,GPU资源使用可以分为如下两种模式: GPU静态分配(共享/独享):按比例给Pod分配GPU显卡资源,支持独享(分配单张/多张显卡)和共享(部分显卡)方式。 GPU虚拟化:UCS On Premises GPU采用xGPU虚拟化技术
选择GPU节点驱动版本 使用GPU加速型云服务器时,需要安装正确的Nvidia基础设施软件,才可以使用GPU实现计算加速功能。在使用GPU前,您需要根据GPU型号,选择兼容配套软件包并安装。 本文将介绍如何选择GPU节点的驱动版本及配套的CUDA Toolkit。 如何选择GPU节点驱动版本
各个模型深度学习训练加速框架的选择 LlamaFactory框架使用两种训练框架: DeepSpeed和Accelerate都是针对深度学习训练加速的工具,但是它们的实现方式和应用场景有所不同。 DeepSpeed是一种深度学习加速框架,主要针对大规模模型和大规模数据集的训练。D
GPU调度 GPU节点驱动版本 使用Kubernetes默认GPU调度 GPU虚拟化 监控GPU资源指标 基于GPU监控指标的工作负载弹性伸缩配置 GPU虚拟化节点弹性伸缩配置 GPU故障处理 GPU监控指标说明 父主题: 调度