检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
深度学习模型预测 深度学习已经广泛应用于图像分类、图像识别和语音识别等不同领域,DLI服务中提供了若干函数实现加载深度学习模型并进行预测的能力。 目前可支持的模型包括DeepLearning4j 模型和Keras模型。由于Keras它能够以 TensorFlow、CNTK或者 Theano
深度学习模型预测 深度学习已经广泛应用于图像分类、图像识别和语音识别等不同领域,DLI服务中提供了若干函数实现加载深度学习模型并进行预测的能力。 目前可支持的模型包括DeepLearning4j 模型和Keras模型。由于Keras它能够以 TensorFlow、CNTK或者 Theano
配置时间模型 Flink中主要提供两种时间模型:Processing Time和Event Time。 DLI允许在创建Source Stream和Temp Stream的时候指定时间模型以便在后续计算中使用。 配置Processing Time Processing Time是
配置时间模型 Flink中主要提供两种时间模型:Processing Time和Event Time。 DLI允许在创建Source Stream和Temp Stream的时候指定时间模型以便在后续计算中使用。 配置Processing Time Processing Time是
距离计算方法,线性模型和非线性模型等。 我们采用一种基于随机森林的异常检测方法: One-pass算法,O(1)均摊时空复杂度。 随机森林结构仅构造一次,模型更新仅仅是节点数据分布值的更新。 节点存储多个窗口的数据分布信息,能够检测数据分布变化。 异常检测和模型更新在同一个代码框架中完成。
StreamingML 异常检测 时间序列预测 实时聚类 深度学习模型预测 父主题: Flink SQL语法参考(不再演进,推荐使用Flink OpenSource SQL)
StreamingML 异常检测 时间序列预测 实时聚类 深度学习模型预测 父主题: Flink SQL语法参考(不再演进,推荐使用Flink OpenSource SQL)
距离计算方法,线性模型和非线性模型等。 我们采用一种基于随机森林的异常检测方法: One-pass算法,O(1)均摊时空复杂度。 随机森林结构仅构造一次,模型更新仅仅是节点数据分布值的更新。 节点存储多个窗口的数据分布信息,能够检测数据分布变化。 异常检测和模型更新在同一个代码框架中完成。
即开即用,Serverless架构。 需要较强的技术能力进行搭建、配置、运维。 高可用 具有跨AZ容灾能力。 无 高易用 学习成本 学习成本低,包含10年、上千个项目经验固化的调优参数。同时提供可视化智能调优界面。 学习成本高,需要了解上百个调优参数。 支持数据源 云上:OBS、RDS、DWS、CSS、MongoDB、Redis。
指使用模型对未来的数据进行推测。DLI服务提供了一系列随机线性模型,帮助用户在线实时进行模型的建模和预测。 ARIMA (Non-Seasonal) ARIMA(Auto-Regressive Integrated Moving Average)是时间序列预测中的经典模型,和AR/MA/ARMA模型之间联系紧密。
指使用模型对未来的数据进行推测。DLI服务提供了一系列随机线性模型,帮助用户在线实时进行模型的建模和预测。 ARIMA (Non-Seasonal) ARIMA(Auto-Regressive Integrated Moving Average)是时间序列预测中的经典模型,和AR/MA/ARMA模型之间联系紧密。
用配置该项。 注意事项 在创建Source Stream时可以指定时间模型以便在后续计算中使用,当前DLI支持Processing Time和Event Time两种时间模型,具体使用语法可以参考配置时间模型。 示例 从OBS的桶读取对象为input.csv的文件,文件以'\n'划行,
用配置该项。 注意事项 在创建Source Stream时可以指定时间模型以便在后续计算中使用,当前DLI支持Processing Time和Event Time两种时间模型,具体使用语法可以参考配置时间模型。 示例 从OBS的桶读取对象为input.csv的文件,文件以'\n'划行,
操作(读取、插入、修改、删除) Doris 中存储的数据。详情可参考Flink Doris Connector 只能对Unique Key模型的表进行修改和删除操作。 表1 支持类别 类别 详情 支持表类型 源表、维表、结果表 父主题: Doris
、私有能力等内置到自定义镜像中,以此改变Spark作业和Flink作业的容器运行环境,增强作业的功能、性能。 例如,在自定义镜像中加入机器学习相关的Python包或者C库,可以通过这种方式帮助用户实现功能扩展。 用户使用自定义镜像功能需要具备Docker相关的基础知识。 使用限制
操作场景 DLI允许用户提交编译为Jar包的Spark作业,Jar包中包含了Jar作业执行所需的代码和依赖信息,用于在数据查询、数据分析、机器学习等特定的数据处理任务中使用。在提交Spark Jar作业前,将程序包上传至OBS,并将程序包与数据和作业参数一起提交以运行作业。 本例介绍
的融合机器学习相关的大数据分析程序。传统上,通常是直接基于pip把Python库安装到执行机器上,对于DLI这样的Serverless化服务用户无需也感知不到底层的计算资源,那如何来保证用户可以更好的运行他的程序呢? DLI服务在其计算资源中已经内置了一些常用的机器学习的算法库(具体可以参考”数据湖探索
SQL语法概览 创建输入流 创建输出流 创建中间流 创建维表 自拓展生态 数据操作语句DML 数据类型 自定义函数 内置函数 地理函数 配置时间模型 CEP模式匹配 StreamingML 保留关键字 父主题: 历史版本
创建sink流将DLI数据输出到对象存储服务(OBS)。DLI可以将作业分析结果输出到OBS上。适用于大数据分析、原生云应用程序数据、静态网站托管、备份/活跃归档、深度/冷归档等场景。 对象存储服务(Object Storage Service,简称OBS)是一个基于对象的海量存储服务,为客户提供海量、安
创建sink流将DLI数据输出到对象存储服务(OBS)。DLI可以将作业分析结果输出到OBS上。适用于大数据分析、原生云应用程序数据、静态网站托管、备份/活跃归档、深度/冷归档等场景。 对象存储服务(Object Storage Service,简称OBS)是一个基于对象的海量存储服务,为客户提供海量、安