已找到以下 46 条记录
AI智能搜索
产品选择
推荐系统 RES
没有找到结果,请重新输入
产品选择
推荐系统 RES
在搜索结果页开启AI智能搜索
开启
产品选择
没有找到结果,请重新输入
  • 特征工程 - 推荐系统 RES

    行为数据的用户画像更新时所提供的结果保存路径。 行为起止日期 用户行为数据时间范围,可只有起始时间、结束时间或为空。 待提取用户特征 从全局特征信息文件中提取输入的用户特征进行排序模型训练。 说明: 离散的区间个数不能超过100个,请您根据业务需求合理分配参数值。 单击“”,增加

  • 自定义场景简介 - 推荐系统 RES

    创建自定义场景 自定义场景作为一个包含多个子任务的作业,通常用于多个召回、过滤、排序等任务。 创建自定义场景 召回策略 召回策略通过大数据计算或深度训练生成推荐候选集。 召回策略 过滤规则 过滤规则用于生成推荐的过滤集,包含黑白名单、历史行为过滤等特性。支持用户在线上推理过程中完成对相关物品的过滤。

  • 什么是推荐系统 - 推荐系统 RES

    场景式推荐 提供多维度的场景推荐,含猜你喜欢、关联推荐、热门推荐,一键式操作,降低客户接入门槛。 近线处理能力 支持实时数据的接入和更新、模型在线学习,近线处理实时训练兴趣模型。 全面的推荐实体 支持以用户推荐物品、以用户推荐用户、以物品推荐物品、以物品推荐用户四种全面的推荐对象,用户根据场景选择不同的推荐实体。

  • 数据结构 - 推荐系统 RES

    您可以从“应用于”右侧的下拉选项中设置该数据的使用维度是“兴趣属性”或者“关键词提取”。其中: 兴趣属性,此特征将会用于统计用户的兴趣标签,并生成特征名为“interested_原特征名”的特征。 关键词提取,只有当关键词为content和title时会进行关键词提取,并生成特征名为“keyword_原特征名”的特征。

  • 基本概念 - 推荐系统 RES

    某电商的客户。 物品 被推荐的内容,一般是指业务系统提供的给其用户的商品。例如,某视频网站的视频。 召回策略 召回策略是指通过大数据计算或深度训练生成推荐候选集的算法策略。 过滤规则 过滤规则用于生成推荐的过滤集,包含黑白名单、 特征过滤等特性。支持用户在线上推理过程中完成对相关物品的过滤。

  • 组合作业 - 推荐系统 RES

    结果保存路径一致。 说明: 在使用通用格式数据之前,需要先进行特征工程算子计算。 通用格式数据:从用户属性表、物品属性表和用户操作行为表中提取用户、物品特征和用户行为,并生成JSON数据,即内部通用格式。 通用格式时间:用户行为数据时间范围,可只有起始时间、结束时间或为空。 完成该项配置后,单击“下一步”。

  • 召回策略 - 推荐系统 RES

    更新全局特征信息文件,并重新设置依赖此文件的配置项。 用户特征:从下拉选项中勾选全局特征信息文件中提取的用户特征用于进行分组推荐。 物品特征:从下拉选项中勾选全局特征信息文件中提取的物品特征用于进行分组推荐。 - 行为次数统计方法 统计物品记录数的方式。 pv:page view,即页面浏览量或点击量。

  • 创建智能场景 - 推荐系统 RES

    描述 offline 是 String 离线计算规格。 nearline 否 String 实时计算规格。 rank 否 String 深度学习计算规格。 online_tps 否 Integer 在线服务最大并发数。 表6 jobConfig 参数 是否必选 参数类型 描述 n

  • 更新智能场景内容 - 推荐系统 RES

    描述 offline 是 String 离线计算规格。 nearline 否 String 实时计算规格。 rank 否 String 深度学习计算规格。 online_tps 否 Integer 在线服务最大并发数。 表5 jobConfig 参数 是否必选 参数类型 描述 n

  • 查询数据源详情 - 推荐系统 RES

    参数 参数类型 描述 offline String 离线计算规格。 nearline String 实时计算规格。 rank String 深度学习计算规格。 online_tps Integer 在线服务最大并发数。 表10 jobs 参数 参数类型 描述 category String

  • ModelArts - 推荐系统 RES

    Native Lives Kubernetes系列课程,带你走进云原生技术的核心 GO语言深入之道 介绍几个Go语言及相关开源框架的插件机制 跟唐老师学习云网络 唐老师将自己对网络的理解分享给大家 智能客服 您好!我是有问必答知识渊博的的智能问答机器人,有问题欢迎随时求助哦! 社区求助 华为

  • 排序策略-离线特征工程 - 推荐系统 RES

    自定义离线特征工程名称,由中文、英文、数字、下划线、空格或者中划线组成,并且不能以空格开始和结束,长度为1~64个字符。 描述 对于特征工程的描述信息。 待提取用户特征 排序模型需要经特征工程处理后的数据, 选择排序模型需要的用户特征, 未选择的用户特征将不会被处理,即排序模块将忽略这些特征。 说明:

  • 分词模型 - 推荐系统 RES

    分词模型 模型名称 res-word-segmentation 功能1 -- 关键词提取(未排序) 将待处理的文本进行分词处理并筛选保留关键词。 URL POST 服务部署成功后返回的预测地址。 请求消息 请求参数请参见表1 请求参数说明。 表1 请求参数说明 参数名称 是否必选

  • 效果评估 - 推荐系统 RES

    “通用格式” 通用格式数据:特征工程“初始用户画像-物品画像-标准宽表生成”算子生成的用户推荐系统的数据。从用户特征表、物品特征表以及用户行为表中提取用户、物品特征和用户行为,并生成json数据,即内部通用格式。 数据时间范围 被统计数据的起始时间和终止时间。 统计间隔(天) 统计间隔,

  • 过滤规则 - 推荐系统 RES

    “通用格式” 通用格式数据:特征工程“初始用户画像-物品画像-标准宽表生成”算子生成的用户推荐系统的数据。从用户特征表、物品特征表以及用户行为表中提取用户、物品特征和用户行为,并生成json数据,即内部通用格式。 通用格式时间:用户行为数据时间范围,可只有起始时间、结束时间或为空。 策略参数设置完成后,单击“确定”。

  • 近线作业 - 推荐系统 RES

    优化策略相关参数 优化器类型:ftrl。适用于处理超大规模数据的,含大量稀疏特征的在线学习的常见优化算法 学习率:优化算法的参数,决定优化器在最优方向上前进步长的参数。默认0.1。 初始梯度累加和:梯度累加和用来调整学习步长。默认0.1。 L1正则项系数:叠加在模型的1范数之上,用来对模型值进行限制防止过拟合。默认0。

  • 提交流式训练作业 - 推荐系统 RES

    优化器类型。现仅提供一种字段。 ftrl:指定为使用ftrl优化器。 initial_accumulator_value 是 Double 用来动态调整学习步长。取值范围(0,1],默认值为0.1。 lambda1 是 Double 叠加在模型的1范数之上,用来对模型值进行限制防止过拟合。取值范围[0

  • 创建在线服务 - 推荐系统 RES

    推荐引擎 推荐引擎用于对RES召回策略跑出来的候选集结果进行融合过滤和排序。 文本标签 文本标签服务为用户提供自然语言处理工具,可用于关键词提取和命名实体识别。 排序 排序服务允许用户提供自己的候选集,使用RES的排序策略进行排序。 前提条件 已经有计算成功的离线作业并且已经生成候选集UUID。

  • 创建自定义场景 - 推荐系统 RES

    略-近线特征工程中创建完成后才可以正常使用排序策略。 在“创建自定义场景”页面,进入“排序策略”页签,单击“添加近线排序策略”。 进行在线学习参数配置。 名称:自定义在线排序策略名称。 离线排序策略:从下拉框中选择已经创建完成的排序策略-离线排序策略作业名称。 优化器类型:具体参数解释请参见Logistic

  • 新建在线服务 - 推荐系统 RES

    Optimizer 参数 是否必选 参数类型 描述 type 否 String 优化器类型。 learning_rate 否 Double 学习率。 initial_accumulator_value 否 Double 初始梯度累加和。 最小值:0 最大值:1 lambda1 否 Double