检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
URL函数 提取函数 描述:提取函数用于从HTTP URL(或任何符合RFC 2396标准的URL)中提取内容。 [protocol:][//host[:port]][path][?query][#fragment] 提取的内容不会包含URI的语法分隔符,比如“:”或“?”。 u
HetuEngine智能物化视图概述 基于智能物化视图,HetuEngine可以提供智能预计算与缓存加速能力。HetuEngine QAS角色能够自动提取历史SQL语句进行分析学习,基于收益最大化原则自动生成高价值物化视图的候选SQL。在实际运用中,HetuEngine管理员可选择通过配置“
服务,里面包含HDFS、Hive、Spark等组件,适用于企业海量数据分析。 其中Hive提供类SQL查询语言,帮助用户对大规模的数据进行提取、转换和加载,即通常所称的ETL(Extraction,Transformation,and Loading)操作。对庞大的数据集查询需要
产生告警的集群名称。 服务名 产生告警的服务名称。 角色名 产生告警的角色名称。 主机名 产生告警的主机名。 对系统的影响 系统无法提供数据加载,查询,提取服务。 可能原因 Hive服务不可用可能与ZooKeeper、HDFS、Yarn和DBService等基础服务有关,也可能由Hive自身的进程故障引起。
产生告警的服务名称。 RoleName 产生告警的角色名称。 HostName 产生告警的主机名。 对系统的影响 系统无法提供数据加载,查询,提取服务。 可能原因 Hive服务不可用可能与ZooKeeper、HDFS、Yarn和DBService等基础服务有关,也可能由Hive自身的进程故障引起。
Spark提供了类似SQL的Spark SQL语言,用于对结构化数据进行操作。使用Spark SQL,可以访问不同的数据库,用户可以从这些数据库中提取数据,处理并加载到不同的数据存储中。 本实践演示如何使用MRS Spark SQL访问GaussDB(DWS)数据。 方案架构 Spark
产生告警的服务名称。 RoleName 产生告警的角色名称。 HostName 产生告警的主机名。 对系统的影响 系统无法提供数据加载,查询,提取服务。 可能原因 Hue服务所依赖内部服务KrbServer故障。 Hue服务所依赖内部服务DBService故障。 与DBService连接的网络异常。
以HDFS文本文件为输入数据: log1.txt:数据输入文件 YuanJing,male,10 GuoYijun,male,5 Map阶段: 获取输入数据的一行并提取姓名信息。 查询HBase一条数据。 查询Hive一条数据。 将HBase查询结果与Hive查询结果进行拼接作为Map输出。 Reduce阶段:
以HDFS文本文件为输入数据 log1.txt:数据输入文件 YuanJing,male,10 GuoYijun,male,5 Map阶段 获取输入数据的一行并提取姓名信息。 查询HBase一条数据。 查询Hive一条数据。 将HBase查询结果与Hive查询结果进行拼接作为Map输出。 Reduce阶段
以HDFS文本文件为输入数据: log1.txt:数据输入文件 YuanJing,male,10 GuoYijun,male,5 Map阶段: 获取输入数据的一行并提取姓名信息。 查询HBase一条数据。 查询Hive一条数据。 将HBase查询结果与Hive查询结果进行拼接作为Map输出。 Reduce阶段:
以HDFS文本文件为输入数据: log1.txt:数据输入文件 YuanJing,male,10 GuoYijun,male,5 Map阶段: 获取输入数据的一行并提取姓名信息。 查询HBase一条数据。 查询Hive一条数据。 将HBase查询结果与Hive查询结果进行拼接作为Map输出。 Reduce阶段:
以HDFS文本文件为输入数据: log1.txt:数据输入文件 YuanJing,male,10 GuoYijun,male,5 Map阶段: 获取输入数据的一行并提取姓名信息。 查询HBase一条数据。 查询Hive一条数据。 将HBase查询结果与Hive查询结果进行拼接作为Map输出。 Reduce阶段:
任务或Spark任务,从而完成对Hadoop集群中存储的海量数据进行查询和分析。 Hive主要特点如下: 通过HQL语言非常容易的完成数据提取、转换和加载(ETL)。 通过HQL完成海量结构化数据分析。 灵活的数据存储格式,支持JSON、CSV、TEXTFILE、RCFILE、O
任务或Spark任务,从而完成对Hadoop集群中存储的海量数据进行查询和分析。 Hive主要特点如下: 通过HQL语言非常容易的完成数据提取、转换和加载(ETL)。 通过HQL完成海量结构化数据分析。 灵活的数据存储格式,支持JSON、CSV、TEXTFILE、RCFILE、O
任务或Spark任务,从而完成对Hadoop集群中存储的海量数据进行查询和分析。 Hive主要特点如下: 通过HQL语言非常容易的完成数据提取、转换和加载(ETL)。 通过HQL完成海量结构化数据分析。 灵活的数据存储格式,支持JSON、CSV、TEXTFILE、RCFILE、O
Spark任务,从而完成对Hadoop集群中存储的海量数据进行查询和分析。 Hive主要特点如下: 通过HiveQL语言非常容易的完成数据提取、转换和加载(ETL)。 通过HiveQL完成海量结构化数据分析。 灵活的数据存储格式,支持JSON,CSV,TEXTFILE,RCFIL
任务或Spark任务,从而完成对Hadoop集群中存储的海量数据进行查询和分析。 Hive主要特点如下: 通过HQL语言非常容易的完成数据提取、转换和加载(ETL)。 通过HQL完成海量结构化数据分析。 灵活的数据存储格式,支持JSON、CSV、TEXTFILE、RCFILE、O
Hive基本原理 Hive是建立在Hadoop上的数据仓库基础构架。它提供了一系列的工具,可以用来进行数据提取转化加载(ETL),这是一种可以存储、查询和分析存储在Hadoop中的大规模数据的机制。Hive定义了简单的类SQL查询语言,称为HQL,它允许熟悉SQL的用户查询数据。
任务或Spark任务,从而完成对Hadoop集群中存储的海量数据进行查询和分析。 Hive主要特点如下: 通过HQL语言非常容易的完成数据提取、转换和加载(ETL)。 通过HQL完成海量结构化数据分析。 灵活的数据存储格式,支持JSON、CSV、TEXTFILE、RCFILE、O
任务或Spark任务,从而完成对Hadoop集群中存储的海量数据进行查询和分析。 Hive主要特点如下: 通过HQL语言非常容易的完成数据提取、转换和加载(ETL)。 通过HQL完成海量结构化数据分析。 灵活的数据存储格式,支持JSON、CSV、TEXTFILE、RCFILE、O