检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
Standard一键完成商超商品识别模型部署。 ModelArts Standard同时提供了自动学习功能,帮助用户零代码构建AI模型,详细介绍请参见使用ModelArts Standard自动学习实现垃圾分类。 面向AI工程师,熟悉代码编写和调测,您可以使用ModelArts Stan
Standard功能介绍 Standard自动学习 Standard Workflow Standard数据管理 Standard开发环境 Standard模型训练 Standard模型部署 Standard资源管理 Standard支持的AI框架 父主题: 功能介绍
欠费后,ModelArts的资源是否会被删除? ModelArts Standard数据管理相关计费FAQ ModelArts Standard自动学习所创建项目一直在扣费,如何停止计费? ModelArts Standard训练作业和模型部署如何收费?
1*Pnt1(16GB)|CPU: 8核 64GB”:GPU单卡规格,16GB显存,适合深度学习场景下的算法训练和调测 Ascend规格 有Snt9(32GB显存)单卡、两卡、八卡等规格。配搭ARM处理器,适合深度学习场景下的模型训练和调测。 “存储配置” 包括“云硬盘EVS”、“弹性文件服务
适用资源池 专属资源池 公共资源池、专属资源池 适用功能模块 Standard自动学习、Workflow、Notebook、模型训练、模型部署 Lite Cluster Lite Server Standard自动学习、Workflow、Notebook、模型训练、模型部署 变更计费模式 不支持
如何查看ModelArts消费详情? ModelArts上传数据集收费吗? ModelArts标注完样本集后,如何保证退出后不再产生计费? ModelArts自动学习所创建项目一直在扣费,如何停止计费? 如果不再使用ModelArts,如何停止收费? 训练作业如何收费? 为什么项目删除完了,仍然还在计费?
以直接通过Run in ModelArts,一键打开运行和学习,并且可将样例修改后分享到AI Gallery中直接另存用于个人开发。 同时,您开发的代码,也可通过CodeLab快速分享到AI Gallery中给他人使用学习。 使用限制 CodeLab默认打开,使用的是CPU计算资
者提供免费分享和灵活使用Notebook代码样例的功能。您可以将优秀的Notebook代码样例发布在AI Gallery社区,供其他开发者学习使用;也可以在AI Gallery上查看其他人共享的Notebook案例的详细描述、代码信息等,通过“Run in ModelArts”将
分布式Tensorflow无法使用“tf.variable” MXNet创建kvstore时程序被阻塞,无报错 日志出现ECC错误,导致训练作业失败 超过最大递归深度导致训练作业失败 使用预置算法训练时,训练失败,报“bndbox”错误 训练作业进程异常退出 训练作业进程被kill 父主题: 训练作业
安全可信,基于安全加固最佳实践,访问策略、用户权限划分、开发软件漏洞扫描、操作系统安全加固等方式,确保镜像使用的安全性。 ModelArts的自定义镜像使用场景 当用户对深度学习引擎、开发库有特殊需求场景的时候,预置镜像已经不能满足用户需求。ModelArts提供自定义镜像功能支持用户自定义运行引擎。 Model
--output_dir下生成 kv_cache_scales.json文件,里面是提取的per-tensor的scale值。内容示例如下: 图1 抽取kv-cache量化系数 注意: 抽取完成后,可能提取不到model_type信息,需要手动将model_type修改为指定模型,如"llama"。
--output_dir下生成 kv_cache_scales.json文件,里面是提取的per-tensor的scale值。内容示例如下: 图1 抽取kv-cache量化系数 注意: 1、抽取完成后,可能提取不到model_type信息,需要手动将model_type修改为指定模型,如"llama"。
运行后在 --output_dir下生成 kv_cache_scales.json文件,里面是提取的per-tensor的scale值。内容示例如下: 注意: 1、 抽取完成后,可能提取不到model_type信息,需要手动将model_type修改为指定模型,如"llama"。
--output_dir下生成 kv_cache_scales.json文件,里面是提取的per-tensor的scale值。内容示例如下: 图1 抽取kv-cache量化系数 注意: 抽取完成后,可能提取不到model_type信息,需要手动将model_type修改为指定模型,如"llama"。
default="0.002", description="训练的学习率策略(10:0.001,20:0.0001代表0-10个epoch学习率0.001,10-20epoch学习率0.0001),如果不指定epoch, 会根据验证精度情况自动调整学习率,并当精度没有明显提升时,训练停止")),
<PATH_TO_OUTPUT_DIR> 运行后在--output_dir下生成kv_cache_scales.json文件,里面是提取的per-tensor的scale值。内容示例如下: 注意: 抽取完成后,可能提取不到model_type信息,需要手动将model_type修改为指定模型,如"llama"。 当
<PATH_TO_OUTPUT_DIR> 运行后在--output_dir下生成kv_cache_scales.json文件,里面是提取的per-tensor的scale值。内容示例如下: 注意: 抽取完成后,可能提取不到model_type信息,需要手动将model_type修改为指定模型,如"llama"。 当
开发环境的Notebook实例 exemlProject 自动学习项目 exemlProjectInf 自动学习项目的在线推理服务 exemlProjectTrain 自动学习项目的训练作业 exemlProjectVersion 自动学习项目的版本 workflow Workflow项目 pool
default="0.002", description="训练的学习率策略(10:0.001,20:0.0001代表0-10个epoch学习率0.001,10-20epoch学习率0.0001),如果不指定epoch, 会根据验证精度情况自动调整学习率,并当精度没有明显提升时,训练停止")),
--output_dir下生成 kv_cache_scales.json文件,里面是提取的per-tensor的scale值。内容示例如下: 图1 抽取kv-cache量化系数 注意: 抽取完成后,可能提取不到model_type信息,需要手动将model_type修改为指定模型,如"llama"。