检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
自动学习 准备数据 模型训练 部署上线 模型发布
基本概念 AI引擎 可支持用户进行机器学习、深度学习、模型训练作业开发的框架,如Tensorflow、Spark MLlib、MXNet、PyTorch、华为自研AI框架MindSpore等。 数据集 某业务下具有相同数据格式的数据逻辑集合。 特征操作 特征操作主要是对数据集进行特征处理。
模型管理 管理模型采集任务 同步数据库和缓存数据 父主题: 应用业务模型使用指导
在左侧导航栏中,选择“数据模型管理 > 数据模型图谱”,进入“数据模型图谱”页面。 在“图谱”内,单击具体节点,在图谱右侧展开对应数据模型的信息窗口。 您也可以通过数据模型图谱搜索展开对应数据模型的信息窗口。 图1 模型探索 单击模型探索,弹出“模型探索”窗口。 “模型探索”窗口为您遍历和展示节点对应数据
热身轮次 表示在模型训练初期,逐步增加学习率到预设值的训练轮次,用于帮助模型在训练初期稳定收敛,避免大幅度的参数更新导致不稳定的学习过程。 热身阶段学习率 热身轮次中使用的初始学习率。 优化器 优化器参数用于更新模型的权重。 sgd(随机梯度下降法)是深度学习中常用的优化算法之一,尤其适用于大规模数据集的训练。
output_asset_model_id 否 String 输出模型ID,如果输出到本模型可以不携带;使用导入模型和导出模型接口时,该字段无效 最大长度:128 output_asset_model_name 否 String 输出模型名称,请求中携带该字段时可以不携带output_asset_model_id
进行模型训练,生成模型包。此联邦学习模型包可以导入至联邦学习部署服务,作为联邦学习实例的基础模型包。 新建训练服务:调用已归档的模型包,对新的数据集进行训练,得到训练结果。 新建超参优化服务:通过训练结果对比,为已创建的训练工程选择一组最优超参组合。 系统还支持打包训练模型,用于
模型训练 硬盘故障检测模板会预置模型训练工程,无需关注,下面会提供端到端的操作流程,帮助用户快速熟悉模型训练界面操作。 单击菜单栏中的“模型训练”,进入模型训练首页。 可以看到预置的“hardisk_detect”模型训练工程,这是硬盘故障检测模板预置的模型训练工程,本次不使用。
训练时间。 学习率衰减比率 用于控制训练过程中学习率下降的幅度。 计算公式为:最低学习率 = 初始学习率 × 学习率衰减比率。 学习率 学习率决定每次训练中模型参数更新的幅度。 选择合适的学习率至关重要: 如果学习率过大,模型可能无法收敛。 如果学习率过小,模型的收敛速度将变得非常慢。
单击展开下载详情,可以查看该数据集的“目标位置”。 步骤四:创建新版自动学习图像分类项目 确保数据集创建完成且可正常使用后,在ModelArts控制台,左侧导航栏选择“开发空间 > 自动学习”,进入自动学习总览页面。 单击选择“图像分类”创建项目。完成参数填写。 名称:自定义您的项目名称。
在ModelArts中训练好后的模型如何获取? 使用自动学习产生的模型只能在ModelArts上部署上线,无法下载至本地使用。 使用自定义算法或者订阅算法训练生成的模型,会存储至用户指定的OBS路径中,供用户下载。 父主题: Standard模型训练
训练模型 选择训练数据后,基于已标注的训练数据,选择预训练模型、配置参数,用于训练实体抽取模型。 前提条件 已在自然语言处理套件控制台选择“通用实体抽取工作流”新建应用,并选择训练数据集,详情请见选择数据。 训练模型 图1 模型训练 在“模型训练”页面配置训练参数,开始训练模型。
获取横向联邦学习作业详情 功能介绍 获取横向联邦学习作业详情 调用方法 请参见如何调用API。 URI GET /v1/{project_id}/leagues/{league_id}/fl-jobs/{job_id} 表1 路径参数 参数 是否必选 参数类型 描述 project_id
删除联邦学习作业 功能介绍 删除联邦学习作业 调用方法 请参见如何调用API。 URI DELETE /v1/{project_id}/leagues/{league_id}/fl-jobs/{job_id} 表1 路径参数 参数 是否必选 参数类型 描述 project_id 是
如何评估微调后的盘古大模型是否正常 评估模型效果的方法有很多,通常可以从以下几个方面来评估模型训练效果: Loss曲线:通过Loss曲线的变化趋势来评估训练效果,确认训练过程是否出现了过拟合或欠拟合等异常情况。 模型评估:使用平台的“模型评估”功能,“模型评估”将对您之前上传的测
保存横向联邦学习作业 功能介绍 保存横向联邦学习作业 调用方法 请参见如何调用API。 URI PUT /v1/{project_id}/leagues/{league_id}/fl-jobs/{job_id} 表1 路径参数 参数 是否必选 参数类型 描述 project_id
如何对盘古大模型的安全性展开评估和防护 盘古大模型的安全性主要从以下方面考虑: 数据安全和隐私保护:大模型涉及大量训练数据,这些数据是重要资产。为确保数据安全,需在数据和模型训练的全生命周期内,包括数据提取、加工、传输、训练、推理和删除的各个环节,提供防篡改、数据隐私保护、加密、
如何回到模型训练服务首页? 用户离开模型训练服务首页,如果需要回到首页,请单击界面左上角的“模型训练”,从下拉框中选择“模型训练”。 父主题: 模型训练服务首页
查询联邦学习作业列表 功能介绍 查询联邦学习作业列表 调用方法 请参见如何调用API。 URI GET /v1/{project_id}/leagues/{league_id}/fl-jobs 表1 路径参数 参数 是否必选 参数类型 描述 project_id 是 String
在服务部署页面,选择模型部署使用的资源规格。 模型来源:默认为生成的模型。 选择模型及版本:自动匹配当前使用的模型版本,支持选择版本。 资源池:默认公共资源池。 分流:默认为100,输入值必须是0-100之间。 计算节点规格:请根据界面显示的列表,选择可用的规格,置灰的规格表示