检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
训练模型 选择训练数据后,基于已标注的训练数据,选择预训练模型、配置参数,用于训练实体抽取模型。 前提条件 已在自然语言处理套件控制台选择“通用实体抽取工作流”新建应用,并选择训练数据集,详情请见选择数据。 训练模型 图1 模型训练 在“模型训练”页面配置训练参数,开始训练模型。
模型”,并配置训练参数,开始训练模型。 预训练模型 当前服务提供预置预训练模型“高精版”、“均衡版”、“基础版”,在“预训练模型”列表中可查看“模型精度”、“推理速度”、“训练速度”和模型“简介”。 参数配置 在“参数配置”填写“学习率”和“训练轮次”。 “学习率”用来控制模型的学习速度,范围为(0
训练模型”,并配置训练参数,开始训练模型。 预训练模型 当前服务提供预置预训练模型“高精版”、“均衡版”、“基础版”,在“预训练模型”列表中可查看“模型精度”、“推理速度”、“训练速度”和模型“简介”。 参数配置 在“参数配置”填写“学习率”、“训练轮次”和“语种”。 “学习率”用来控制模型的学习速度,范围为(0
已在视觉套件控制台选择“零售商品识别工作流”新建应用,并训练模型,详情请见训练模型。 评估模型 在“模型评估”页面,您可以针对当前版本的模型进行模型评估,查看评估参数对比和详细评估,也可以模拟在线测试。 图1 模型评估 模型评估 “模型评估”下侧显示当前模型的版本、标签数量、验证集数量。 评估参数对比
模型训练一般需要运行一段时间,等模型训练完成后,“模型训练”页面下方显示训练详情。 查看训练详情 模型训练完成后,可在“模型训练”页面查看“训练详情”,包括“准确率变化情况”和“误差变化”。 图1 模型训练 模型如何提升效果 检查是否存在训练数据过少的情况,建议每个类别的图片量不少于100个,如果低于这个量级建议扩充。
模型训练一般需要运行一段时间,等模型训练完成后,“模型训练”页面下方显示查看训练详情。 图1 训练模型 查看训练详情 模型训练完成后,可在“模型训练”页面查看“训练详情”,包括“准确率变化情况”和“误差变化”。 图2 模型训练 模型如何提升效果 检查是否存在训练数据过少的情况,建议每个类别的图片量不
在“模型训练”页面,单击“开始训练”。 模型训练一般需要运行一段时间,等模型训练完成后,“开发应用>模型训练”页面下方显示查看训练详情。 查看训练详情 模型训练完成后,可在“模型训练”页面查看“训练详情”,包括“准确率变化情况”和“误差变化”。 图1 模型训练 模型如何提升效果 检查是否存在训练数据过少的情
模型训练一般需要运行一段时间,等模型训练完成后,“开发应用>模型训练”页面下方显示查看训练详情。 查看训练详情 模型训练完成后,可在“模型训练”页面查看“训练详情”,包括“准确率变化情况”和“误差变化”。 图1 模型训练 模型如何提升效果 检查是否存在训练数据过少的情况,建议每个类别的图片量不少于100个,如果低于这个量级建议扩充。
模型训练一般需要运行一段时间,等模型训练完成后,“开发应用>模型训练”页面下方显示查看训练详情。 查看训练详情 模型训练完成后,可在“模型训练”页面查看“训练详情”,包括“准确率变化情况”和“误差变化”。 图1 模型训练 模型如何提升效果 检查是否存在训练数据过少的情况,建议每个类别的图片量不少于100个,如果低于这个量级建议扩充。
训练模型 针对已标注完成的训练数据,开始训练模型,您可以查看训练的模型准确率和误差变化。 前提条件 已在视觉套件控制台选择“无监督车牌检测工作流”新建应用,并已执行完“数据选择”步骤,详情请见选择数据。 训练模型 图1 训练模型 在“模型训练”页面,选择“训练模型”和“车辆场景”。
评估模型 训练得到模型之后,整个开发过程还不算结束,需要对模型进行评估和考察。一次性很难获得一个满意的模型,需要反复的调整算法参数、数据,不断评估训练生成的模型。 一些常用的指标,如精准率、召回率、F1值等,能帮助您有效的评估,最终获得一个满意的模型。 前提条件 已在自然语言处理
请见选择数据。 训练模型 在“应用开发>模型训练”页面,配置训练参数,开始训练模型。 输出路径 模型训练后,输出的模型和数据存储在OBS的路径。单击输入框,在输出路径的对话框中选择OBS桶和文件夹,然后单击“确定”。 预训练模型 当前服务提供安全帽检测预置模型“saved_model
工作流”新建应用,并训练模型,详情请见训练模型。 整体评估 在“模型评估”页面,您可以针对当前版本的模型进行整体评估。 “整体评估”左侧显示当前模型的标签名称和评估参数值,包括“精准率”、“召回率”、“F1值”。 “整体评估”右侧显示当前模型和其他版本模型的评估参数值柱状图,包括
评估模型 训练得到模型之后,整个开发过程还不算结束,需要对模型进行评估和考察。往往不能一次性获得一个满意的模型,需要反复的调整算法参数、数据,不断评估训练生成的模型。 一些常用的指标,如精准率、召回率、F1值等,能帮助您有效的评估,最终获得一个满意的模型。 前提条件 已在自然语言
并训练模型,详情请见训练模型。 评估模型 在“模型评估”页面,您可以针对当前版本的模型进行模型评估,查看评估参数对比和详细评估,也可以模拟在线测试。 图1 评估模型 模型评估 “模型评估”下侧显示当前模型的版本、验证集数量。 评估参数对比 “评估参数对比”下方显示当前模型的评估参
已在视觉套件控制台选择“第二相面积含量测定工作流”新建应用,并训练模型,详情请见训练模型。 整体评估 在“模型评估”页面,您可以针对当前版本的模型进行整体评估。 图1 模型评估 “模型评估”显示当前模型的“版本”、“标签数量”、“验证集数量”。 “评估参数对比”显示当前模型和其他版本模型的评估参数值柱状图,包括“交并
并训练模型,详情请见训练模型。 评估模型 在“模型评估”页面,您可以针对当前版本的模型进行模型评估,查看评估参数对比和详细评估,也可以模拟在线测试。 图1 评估模型 模型评估 “模型评估”下侧显示当前模型的版本、验证集数量。 评估参数对比 “评估参数对比”下方显示当前模型的评估参
训练模型 针对已标注完成的训练数据,开始训练模型,您可以查看训练的模型交并比和误差变化。 前提条件 已在视觉套件控制台选择“第二相面积含量测定工作流”新建应用,并已执行完“数据标注”步骤,详情请见标注数据。 训练模型 在“模型训练”页面配置训练参数,开始训练模型。 在“参数配置”
已在视觉套件控制台选择“热轧钢板表面缺陷检测工作流”新建应用,并训练模型,详情请见训练模型。 评估模型 在“模型评估”页面,您可以针对当前版本的模型进行模型评估,查看评估参数对比和详细评估,也可以模拟在线测试。 图1 评估模型 模型评估 “模型评估”下侧显示当前模型的版本、标签数量、验证集数量。 评估参数对比