检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
项目实习生 深度学习模型优化 深度学习模型优化 领域方向:人工智能 工作地点: 深圳 深度学习模型优化 人工智能 深圳 项目简介 为AI类应用深度学习模型研发优化技术,包括神经网络结构设计,NAS搜索算法,训练算法优化,AI模型编译优化等。 岗位职责 负责调研深度学习模型优化技术业
可能会导致模型在训练过程中产生振荡,无法收敛甚至错过最优解;而学习率过小,则会使模型收敛速度过慢。可以采用动态调整学习率的策略,如学习率衰减。随着训练的进行,逐渐降低学习率,这样在训练初期可以利用较大的学习率快速接近最优解,而在后期则通过较小的学习率来进行精细调整,以达到更好的
虽然modelarts能够帮助我们在线上完成深度学习的模型,但是训练好的深度学习模型是怎么部署的
代码实现6,7,8中的设计 使用超参优化工具(NNI)寻找最优超参组合 模型初步训练 改进:根据初步训练的效果指标判断是数据集问题还是模型结构或深度问题 数据集问题,想办法进一步清洗补充数据集 模型结构问题,尝试更换或者NNI搜索更优模型;模型深度问题,尝试增加backbone的卷积通道层数或者复制增加layers
确率上限是多少,以此判断模型的准确率还差多远。2、训练时每隔一定步数记录一次训练集错误率和验证集错误率,一直训练,直到在训练集上的错误率不再下降,停止训练;3、计算贝叶斯错误率与训练错误率之差,该差值称为模型偏差,计算训练错误率与验证错误率之差,该差值称为模型方差,将训练时记录的
第8层:FC-SoftmaxCaffe AlexNet实现模型结构如下:模型创新点:1. 使用新的激活函数Relu在Relu被使用之前,广泛使用的激活函数是tanh,sigmodtanh:sigmod:(为什么要使用Relu)tanh sigmod这两个激活函数的问题:存在梯度弥散,模型收敛较慢的问题,且无法表征非
或者学习率设置得过大,使得模型在最优解附近震荡,甚至跳过最优解,导致无法收敛。您可以尝试提升数据质量或者减小学习率的方式来解决。 图3 异常的Loss曲线:上升 Loss曲线平缓,保持高位:Loss保持平缓且保持高位不下降的原因可能是由于目标任务的难度较大,或者模型的学习率设置
者目标等),再到更高层的目标、目标的行为等,即底层特征组合成了高层特征,由低到高的特征表示越来越抽象。深度学习借鉴的这个过程就是建模的过程。 深度神经网络可以分为3类,前馈深度网络(feed-forwarddeep networks, FFDN),由多个编码器层叠加而成,如多层感知机(multi-layer
目标等),再到更高层的目标、目标的行为等,即底层特征组合成了高层特征,由低到高的特征表示越来越抽象。深度学习借鉴的这个过程就是建模的过程。 深度神经网络可以分为3类:1.前馈深度网络(feed-forwarddeep networks, FFDN),由多个编码器层叠加而成,如多层感知机(multi-layer
前言 深度学习模型的开发周期,包括训练阶段和部署阶段。训练阶段,用户需要收集训练数据,定义自己的模型结构,在CPU或者GPU硬件上进行训练,这个过程反复优化,直到训练出满意精度的模型。有了模型之后,我们需要将模型服务部署运行,我们期望服务延迟越低越好,吞吐越高越好。这里会从编译优
各个模型深度学习训练加速框架的选择 LlamaFactory框架使用两种训练框架: DeepSpeed和Accelerate都是针对深度学习训练加速的工具,但是它们的实现方式和应用场景有所不同。 DeepSpeed是一种深度学习加速框架,主要针对大规模模型和大规模数据集的训练。D
敬请期待后续更新。 父主题: 基于CodeArts IDE Online、TensorFlow和Jupyter Notebook开发深度学习模型
epochs=10) 父主题: 基于CodeArts IDE Online、TensorFlow和Jupyter Notebook开发深度学习模型
常见的模型压缩方法有以下几种: 模型蒸馏 Distillation,使用大模型的学到的知识训练小模型,从而让小模型具有大模型的泛化能力 量化 Quantization,降低大模型的精度,减小模型 剪枝 Pruning,去掉模型中作用比较小的连接 参数共享,
长短期记忆(Long short-term memory, LSTM)是一种特殊的RNN,主要是为了解决长序列训练过程中的梯度消失和梯度爆炸问题。简单来说,就是相比普通的RNN,LSTM能够在更长的序列中有更好的表现。
-ModelArts介绍 -ModelArts快速入门 AI进阶 -自动学习简介 -预测算法 -使用预置算法构建模型 AI工程师使用ModelArts -使用自定义算法构建模型 使用ModelArts VS Code插件进行模型开发 了解更多入门指引 精品教程助您快速上手体验 精品教程助您快速上手体验
基于CodeArts IDE Online、TensorFlow和Jupyter Notebook开发深度学习模型 概要 准备工作 导入和预处理训练数据集 创建和训练模型 使用模型
AI平台ModelArts资源 AI平台ModelArts资源 面向开发者的一站式AI开发平台,可快速创建和部署模型,管理全周期AI工作流,助力千行百业智能升级 面向开发者的一站式AI开发平台,可快速创建和部署模型,管理全周期AI工作流,助力千行百业智能升级 购买 控制台 文档 资源与工具 资源与工具 开发服务
概要 本章节主要讲解如何在CodeArts IDE Online中使用TensorFlow和Jupyter Notebook完成神经网络模型的训练,并利用该模型完成简单的图像分类。 父主题: 基于CodeArts IDE Online、TensorFlow和Jupyter Notebook开发深度学习模型
Editor,可以在里面编辑和运行cell。 父主题: 基于CodeArts IDE Online、TensorFlow和Jupyter Notebook开发深度学习模型