检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
pipeline代码为例进行说明。 进入容器环境,创建自己的工作目录。 由于在Snt9B裸金属服务器环境配置指南的配置环境步骤中,在启动容器时将物理机的home目录挂载到容器的“/home_host”目录下,该目录可以直接使用上传到物理机“home”目录下的文件。本文中,将基于容器的“/home_host”目录创建工作目录。
验阶段,有一个可以优化训练的性能的想法,则会回到开发阶段,重新优化代码。 图1 模型开发过程 ModelArts提供了模型训练的功能,方便您查看训练情况并不断调整您的模型参数。您还可以基于不同的数据,选择不同规格的资源池用于模型训练。 请参考以下指导在ModelArts Standard上训练模型。
PyTorch,MindSpore等常用深度学习任务的基础镜像,镜像里已经安装好运行任务所需软件。当基础镜像里的软件无法满足您的程序运行需求时,您可以基于这些基础镜像制作一个新的镜像并进行训练。 训练基础镜像列表 ModelArts中预置的训练基础镜像如下表所示。 表1 ModelArts训练基础镜像列表
就绪探针:用于检测应用实例是否已经准备好接收流量。如果就绪探针失败,即实例未准备好,会从服务负载均衡的池中剔除该实例,不会将流量路由到该实例,直到探测成功。 存活探针:用于检测应用实例内应用程序的健康状态。如果存活探针失败,即应用程序不健康,将会自动重启实例。 3种探针的配置参数均为:
一些常用的指标,如准确率、召回率、AUC等,能帮助您有效的评估,最终获得一个满意的模型。 部署模型 模型的开发训练,是基于之前的已有数据(有可能是测试数据),而在得到一个满意的模型之后,需要将其应用到正式的实际数据或新产生数据中,进行预测、评价、或以可视化和报表的形式把数据中的高价值信息以精辟易懂的形式提供给决策人员,帮助其制定更加正确的商业策略。
AI开发基本概念 机器学习常见的分类有3种: 监督学习:利用一组已知类别的样本调整分类器的参数,使其达到所要求性能的过程,也称为监督训练或有教师学习。常见的有回归和分类。 非监督学习:在未加标签的数据中,试图找到隐藏的结构。常见的有聚类。 强化学习:智能系统从环境到行为映射的学习,以使奖励信号(强化信号)函数值最大。
请参考创建模型的自定义镜像规范和从0-1制作自定义镜像并创建模型,制作自定义镜像。 推荐在开发环境Notebook中调试模型包,制作自定义镜像。请参考在开发环境中构建并调试推理镜像和无需构建直接在开发环境中调试并保存镜像用于推理。 更多的自定义脚本代码示例,请参考自定义脚本代码示例。 模型包里面必须包含“mo
Torch,MindSpore等常用深度学习任务的基础镜像,镜像里已经安装好运行任务所需软件。当基础镜像里的软件无法满足您的程序运行需求时,您还可以基于这些基础镜像制作一个新的镜像并进行训练。 训练作业的预置框架介绍 ModelArts中预置的训练基础镜像如下表所示。 表1 ModelArts训练基础镜像列表
BF16和FP16说明 在大模型训练中,BF16(Brain Floating Point)和FP16(Float16)都是使用的半精度浮点数格式,但它们在结构和适用性上有一些重要的区别。 BF16:具有8个指数位和7个小数位。在处理大模型时有优势,能够避免在训练过程中数值的上溢或下溢,从
BF16和FP16说明 在大模型训练中,BF16(Brain Floating Point)和FP16(Float16)都是使用的半精度浮点数格式,但它们在结构和适用性上有一些重要的区别。 BF16:具有8个指数位和7个小数位。在处理大模型时有优势,能够避免在训练过程中数值的上溢或下溢,从
BF16和FP16说明 在大模型训练中,BF16(Brain Floating Point)和FP16(Float16)都是使用的半精度浮点数格式,但它们在结构和适用性上有一些重要的区别。 BF16:具有8个指数位和7个小数位。在处理大模型时有优势,能够避免在训练过程中数值的上溢或下溢,从
BF16和FP16说明 在大模型训练中,BF16(Brain Floating Point)和FP16(Float16)都是使用的半精度浮点数格式,但它们在结构和适用性上有一些重要的区别。 BF16:具有8个指数位和7个小数位。在处理大模型时有优势,能够避免在训练过程中数值的上溢或下溢,从
AI应用管理 查询模型runtime 查询AI应用列表 创建AI应用 查询AI应用详情 删除AI应用
数据可以通过相似度或者深度学习算法进行选择。数据选择可以避免人工采集图片过程中引入的重复图片、相似图片等问题;在一批输入旧模型的推理数据中,通过内置规则的数据选择可以进一步提升旧模型精度。 数据增强: 数据扩增通过简单的数据扩增例如缩放、裁剪、变换、合成等操作直接或间接的方式增加数据量。
容器调用接口:指定模型启动的协议和端口号。请确保协议和端口号与自定义镜像中提供的协议和端口号保持一致。 镜像复制:选填,选择是否将容器镜像中的模型镜像复制到ModelArts中。 健康检查:选填,用于指定模型的健康检查。仅当自定义镜像中配置了健康检查接口,才能配置“健康检查”,否则会导致模型创建失败。
掉卡 NPU卡丢失。 节点规格的NPU卡数和k8sNode中可调度卡数不一致。 可能是亚健康,建议先重启节点,如果重启节点后未恢复,发起维修流程。 NT_NPU_OTHER NPU 其他 NPU其他错误。 检测到的其他NPU错误,通常为不可自纠正的异常,请联系技术人员支持。 发起维修流程。
请选择您使用的引擎所对应的运行时环境。目前支持的运行时环境列表请参见推理支持的AI引擎。 需要注意的是,如果您的模型需指定CPU或GPU上运行时,请根据runtime的后缀信息选择,当runtime中未包含cpu或gpu信息时,请仔细阅读“推理支持的AI引擎”中每个runtime的说明信息。
昇腾能力应用地图 ModelArts支持如下开源模型昇腾NPU进行训练和推理。 LLM大语言模型 ModelArts针对以下主流的LLM大模型进行了基于昇腾NPU的适配工作,可以直接使用适配过的模型在NPU上进行推理训练。 表1 LLM模型推理能力 支持模型 支持模型参数量 应用场景
容器调用接口:指定模型启动的协议和端口号。请确保协议和端口号与自定义镜像中提供的协议和端口号保持一致。 镜像复制:选填,选择是否将容器镜像中的模型镜像复制到ModelArts中。 健康检查:选填,用于指定模型的健康检查。仅当自定义镜像中配置了健康检查接口,才能配置“健康检查”,否则会导致模型创建失败。
就绪探针:用于检测应用实例是否已经准备好接收流量。如果就绪探针失败,即实例未准备好,会从服务负载均衡的池中剔除该实例,不会将流量路由到该实例,直到探测成功。 存活探针:用于检测应用实例内应用程序的健康状态。如果存活探针失败,即应用程序不健康,将会自动重启实例。 3种探针的配置参数均为: