检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
模型精度信息,从配置文件读取,可不填。非模板参数 source_type 否 String 模型来源的类型,当前仅可取值“auto”,用于区分通过自动学习部署过来的模型(不提供模型下载功能);用户通过训练作业和其他方式部署的模型不设置此值。默认值为空。非模板参数 dependencies 否
扣费。在“费用中心 > 账单管理 > 流水和明细账单 > 流水账单”中,“消费时间”即按需产品的实际使用时间。 查看自动学习和Workflow的账单 自动学习和Workflow运行时,在进行训练作业和部署服务时,会产生不同的账单。 训练作业产生的账单可参考查看训练作业的账单查询。
benchmark_utils.py # 抽离的工具集 ├── generate_datasets.py # 生成自定义数据集的脚本 ├── requirements.txt # 第三方依赖 ├──benchmark_eval
# 加载断点 checkpoint = torch.load(local_ckpt_file) # 加载模型可学习参数 model.load_state_dict(checkpoint['net']) # 加载优化器参数 optimizer
“MA_NUM_GPUS=8” MA_TASK_NAME 作业容器的角色名,例如: MindSpore、PyTorch为worker 强化学习引擎为learner,worker TensorFlow为ps,worker “MA_TASK_NAME=worker” MA_NUM_HOSTS
# 加载断点 checkpoint = torch.load(local_ckpt_file) # 加载模型可学习参数 model.load_state_dict(checkpoint['net']) # 加载优化器参数 optimizer
该资产支持使用Gallery CLI配置工具下载,如图1所示。 图1 复制完整资产名称 “运行平台”设置为“Pangu Studio”的数据集,不支持使用CLI工具下载。 下载Gallery CLI配置工具包(本地) 如果是在本地服务器安装Gallery CLI配置工具,则参考本节将工具包下载至本地。
Diffusion模型迁移到Ascend上进行推理。 方式二 ModelArts Lite DevServer 该环境为裸机开发环境,主要面向深度定制化开发场景。 优点:支持深度自定义环境安装,可以方便的替换驱动、固件和上层开发包,具有root权限,结合配置指导、初始化工具及容器镜像可以快速搭建昇腾开发环境。
name}替换为实际的容器名称。 docker exec -it ${container_name} bash 步骤二:上传代码、权重和数据集到容器中 安装插件代码包。 将获取到的插件代码包AscendCloud-AIGC-6.3.912-xxx.zip文件上传到容器的/home/ma-user目录下,并解压。
benchmark_utils.py # 抽离的工具集 ├── generate_datasets.py # 生成自定义数据集的脚本 ├── requirements.txt # 第三方依赖 ├──benchmark_eval
OBS和训练容器间的数据传输原理可以参考基于ModelArts Standard运行GPU训练作业。 准备数据 单击下载动物数据集至本地,并解压。 通过obsutil将数据集上传至OBS桶中。 ./obsutil cp ./dog_cat_1w obs://${your_obs_buck}/demo/
从第三方元模型导入,则为空,默认值为空。 source_type 否 String 模型来源的类型,当前仅可取值auto,用于区分通过自动学习部署过来的模型(不提供模型下载功能);用户通过训练作业部署的模型不设置此值。默认值为空。 model_type 是 String 模型类型
和权限做更加细致的约束,具体为如下两种约束: 只有被授权的用户才能访问特定的工作空间(在创建、管理工作空间的页面进行配置),这意味着,像数据集、算法等AI资产,均可以借助工作空间做访问的限制。 在前文提到的权限授权操作中,如果“选择授权范围方案”时设定为“指定企业项目资源”,那么
和权限做更加细致的约束,具体为如下两种约束: 只有被授权的用户才能访问特定的工作空间(在创建、管理工作空间的页面进行配置),这意味着,像数据集、算法等AI资产,均可以借助工作空间做访问的限制。 在前文提到的权限授权操作中,如果“选择授权范围方案”时设定为“指定企业项目资源”,那么
分布式Tensorflow无法使用“tf.variable” MXNet创建kvstore时程序被阻塞,无报错 日志出现ECC错误,导致训练作业失败 超过最大递归深度导致训练作业失败 使用预置算法训练时,训练失败,报“bndbox”错误 训练作业进程异常退出 训练作业进程被kill 父主题: 训练作业
资源隔离开来,以确保特定需求能够得到满足。 ModelArts Standard资源池提供了在使用ModelArts进行AI开发(包括自动学习、创建Workflow工作流、创建Notebook实例、创建训练作业和创建推理服务)所需的计算资源。更多Standard资源池介绍请见Standard资源池功能介绍。
训练脚本可判断是否完成预处理后的数据和权重转换的模型。如果未完成,则执行脚本,自动完成数据预处理和权重转换的过程。 如果用户进行自定义数据集预处理以及权重转换,可通过编辑 1_preprocess_data.sh 、2_convert_mg_hf.sh中的具体python指令,
训练脚本可判断是否完成预处理后的数据和权重转换的模型。如果未完成,则执行脚本,自动完成数据预处理和权重转换的过程。 如果用户进行自定义数据集预处理以及权重转换,可通过编辑 1_preprocess_data.sh 、2_convert_mg_hf.sh中的具体python指令,
c字段配套。 weight Integer 权重,分配到此模型的流量权重。 source_type String 模型来源,当模型是由自动学习产生时返回此字段,取值为auto。 model_id String 模型ID。 src_path String 批量任务输入数据的OBS路径,例如:“https://xxx
Sequential() from keras.layers import Dense import tensorflow as tf # 导入训练数据集 mnist = tf.keras.datasets.mnist (x_train, y_train),(x_test, y_test) =