检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
Lite Cluster&Server介绍 ModelArts Lite基于软硬件深度结合、垂直优化,构建开放兼容、极致性价比、长稳可靠、超大规模的云原生AI算力集群,提供一站式开通、网络互联、高性能存储、集群管理等能力,满足AI高性能计算等场景需求。目前其已在大模型训练推理、自
-r MiniCPM-V-2_6 ${container_work_dir}/minicpm/MiniCPM-V-2_6/ 准备coco数据集。 cd MiniCPM-V/finetune/ # Download COCO images wget http://images.cocodataset
免费。 包月购买。 免费。 包月购买。 (建议不小于2U8G,本地存储空间100G,带EIP全动态BGP,按流量10M带宽) × 表2 开源数据集训练效率参考 算法及数据 资源规格 Epoch数 运行时长(hh:mm:ss) 算法:PyTorch官方针对ImageNet的样例 数据:ImageNet分类数据子集
UTC'的毫秒数。 description String 模型描述信息。 source_type String 模型来源的类型,仅当模型为自动学习部署过来时有值,取值为auto。 父主题: 模型管理
ts CommonOperations”已生效。 在“服务列表”中选择ModelArts,进入ModelArts主界面,单击“数据管理>数据集>创建数据”,如果可以成功访问对应的OBS路径,表示OBS权限已生效。 参考表1依次验证其他可选权限。 父主题: 配置MaaS访问授权
包月购买 (Ubuntu 18.04,建议不小于2U8G,本地存储空间100G,带EIP全动态BGP,按流量10M带宽) × 表2 开源数据集训练效率参考 算法及数据 资源规格 Epoch数 预计运行时长(hh:mm:ss) 算法:PyTorch官方针对ImageNet的样例 数据:ImageNet分类数据子集
一般情况包括如下两种内容类型: “application/json”,发送json数据。 “multipart/form-data”,上传文件。 说明: 针对机器学习类模型,仅支持“application/json” data 在线服务-非必选 批量服务-必选 String 请求体以json schema描述。参数说明请参考官方指导。
属资源池容器引擎空间不会造成额外费用增加。 更多信息,请参见导入AI应用对镜像大小的约束限制。 自动学习项目中,在完成模型部署后,其生成的模型也将自动上传至模型列表中。但是自动学习生成的模型无法下载,只能用于部署上线。 Standard推理服务部署 只支持使用专属资源池部署的在线
|──ascendcloud_patch/ # patch补丁包 |──benchmark/ #工具包,存放数据集及基线数据 |──trainer.py # 训练启动脚本 |──performance
WorkerTask 参数 参数类型 描述 create_time Long 团队标注成员任务创建时间。 dataset_id String 成员任务关联的数据集ID。 dataset_type Integer 团队标注成员任务标注类型。 email String 团队标注成员邮箱。 email_status
├── spiece.model └── tokenizer_config.json 0 directories, 8 files 准备数据集 数据集格式应该如下: . ├── labels │ ├── 1.txt │ ├── 2.txt │ ├── ... └── videos
|──ascendcloud_patch/ # patch补丁包 |──benchmark/ #工具包,存放数据集及基线数据 |──trainer.py # 训练启动脚本 |──performance
String 模型名称。 model_version String 模型版本。 source_type String 模型来源,当模型是由自动学习产生时,返回此字段,取值为:auto。 status String 模型实例运行状态,取值为: ready:已就绪(所有实例已启动) co
16支持128和-1,W8A16支持-1。 --w-bit:量化比特数,W4A16设置4,W8A16设置8。 --calib-data:数据集路径,推荐使用:https://huggingface.co/datasets/mit-han-lab/pile-val-backup,注意需指定到val
16支持128和-1,W8A16支持-1。 --w-bit:量化比特数,W4A16设置4,W8A16设置8。 --calib-data:数据集路径,推荐使用:https://huggingface.co/datasets/mit-han-lab/pile-val-backup,注意需指定到val
mkdir -p tokenizers/Llama2-70B 注意:多机情况下,只有在rank_0节点进行数据预处理,转换权重等工作,所以原始数据集和原始权重,包括保存结果路径,都应该在共享目录下。 父主题: 准备工作
16支持128和-1,W8A16支持-1。 --w-bit:量化比特数,W4A16设置4,W8A16设置8。 --calib-data:数据集路径,推荐使用:https://huggingface.co/datasets/mit-han-lab/pile-val-backup,注意需指定到val
系统将根据您的模型匹配提供可用的计算资源。请在下拉框中选择可用资源,如果资源标识为售罄,表示暂无此资源。 例如,模型来源于自动学习项目,则计算资源将自动关联自动学习规格供使用。 “实例数” 设置当前版本模型的实例个数。如果节点个数设置为1,表示后台的计算模式是单机模式;如果节点个数设置
本指南提供了算子问题定位工具集详细的使用场景和使用步骤,方便用户自行或在支持下排查可能的数值计算精度问题。 当用户将大语言模型或者其他类型深度神经网络的训练从GPU迁移到昇腾AI处理器时,可能出现以下不同现象的模型精度问题。一般包括: Loss曲线与CPU/GPU差异不符合预期。
前提条件 Step1 下载并安装PyCharm ToolKit。 在本地PyCharm中已有训练代码工程。 已在OBS中创建桶和文件夹,用于存放数据集和训练输出模型。 例如:创建命名为“test-modelarts2”的桶,创建文件夹“dataset-mnist”和“mnist-outp