检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
lama2-13B-chat-hf。 利用OBS-Browser+工具将步骤1下载的权重文件上传至步骤2创建的文件夹目录下。得到OBS下数据集结构,此处以llama2-13B为例(权重文件可能变化,以下仅为举例): obs://<bucket_name>/model/llama-2-13b-chat-hf/
B-chat-hf。 参考文档利用OBS-Browser-Plus工具将步骤1下载的权重文件上传至步骤2创建的文件夹目录下。得到OBS下数据集结构,此处以llama2-13B为例(权重文件可能变化,以下仅为举例): obs://<bucket_name>/model/llama-2-13b-chat-hf/
的简介、能力描述、训练情况、引用等信息。编辑内容会自动保存在“README.md”文件里。 更新后的“README.md”文件自动存放在数据集详情页的“文件版本”页签或者是模型详情页的“模型文件”页签。 创建模型资产 登录AI Gallery,单击右上角“我的Gallery”进入我的Gallery页面。
B-chat-hf。 参考文档利用OBS-Browser-Plus工具将步骤1下载的权重文件上传至步骤2创建的文件夹目录下。得到OBS下数据集结构,此处以llama2-13B为例(权重文件可能变化,以下仅为举例): obs://<bucket_name>/model/llama-2-13b-chat-hf/
B-chat-hf。 参考文档利用OBS-Browser-Plus工具将步骤1下载的权重文件上传至步骤2创建的文件夹目录下。得到OBS下数据集结构,此处以llama2-13B为例(权重文件可能变化,以下仅为举例): obs://<bucket_name>/model/llama-2-13b-chat-hf/
Cloud-LLM-xxx.zip目录下并解压缩。 unzip AscendCloud-*.zip 结合准备数据、准备权重、准备代码,将数据集、原始权重、代码文件都上传至SFS Turbo后,目录结构如下。 /mnt/sfs_turbo/ |──llm_train
Cloud-LLM-xxx.zip目录下并解压缩。 unzip AscendCloud-*.zip 结合准备数据、准备权重、准备代码,将数据集、原始权重、代码文件都上传至SFS Turbo后,目录结构如下。 /mnt/sfs_turbo/ |──llm_train
chat/internvl/model/internlm2/modeling_internlm2.py 步骤七:下载数据集 先创建文件夹用来存放数据集,再下载数据集。 cd ${container_work_dir}/InternVL/internvl_chat mkdir -p
source_type String 模型来源的类型,仅当模型为自动学习部署过来时有值,取值为auto。 model_id String 模型id。 model_source String 模型来源。auto:自动学习;algos:预置算法;custom:自定义。 install_type
UTC'的毫秒数。 description String 模型描述信息。 source_type String 模型来源的类型,仅当模型为自动学习部署过来时有值,取值为“auto”。 父主题: 模型管理
将AscendSpeed代码包AscendCloud-LLM-xxx.zip在本地解压缩后,将llm_train文件上传至OBS中。 结合准备数据、准备权重、准备代码,将数据集、原始权重、代码文件都上传至OBS后,OBS桶的目录结构如下。 <bucket_name> |──llm_train
source_job_version String 来源训练作业的版本。 source_type String 模型来源的类型。 当模型为自动学习部署过来时,取值为“auto”。 当模型是用户通过训练作业或OBS模型文件部署时,此值为空。 model_type String 模型类型
16支持128和-1,W8A16支持-1。 --w-bit:量化比特数,W4A16设置4,W8A16设置8。 --calib-data:数据集路径,推荐使用:https://huggingface.co/datasets/mit-han-lab/pile-val-backup,注意需指定到val
16支持128和-1,W8A16支持-1。 --w-bit:量化比特数,W4A16设置4,W8A16设置8。 --calib-data:数据集路径,推荐使用:https://huggingface.co/datasets/mit-han-lab/pile-val-backup,注意需指定到val
以直接通过Run in ModelArts,一键打开运行和学习,并且可将样例修改后分享到AI Gallery中直接另存用于个人开发。 同时,您开发的代码,也可通过CodeLab快速分享到AI Gallery中给他人使用学习。 使用限制 CodeLab默认打开,使用的是CPU计算资
模型运行时环境。 model_metrics String 模型精度信息。 source_type String 模型来源的类型,仅当模型为自动学习部署过来时有值,取值为auto。 model_type String 模型类型,取值为TensorFlow/Image/PyTorch/Template/MindSpore。
建议设置为“data_url”。训练输入参数要与所选算法的“输入”参数匹配。 “输入路径”:训练输入支持来源数据集和OBS桶。 单击“数据集”,在ModelArts数据集列表中勾选目标数据集并选择对应的版本。 单击“数据存储位置”,从OBS桶中选择训练输入数据的存储位置。文件总大小要小于或
文件夹models。 参考文档利用OBS-Browser-Plus工具将步骤1下载的权重文件上传至步骤2创建的文件夹目录下。得到OBS下数据集结构,此处以Qwen/Qwen-VL-Chat为例: obs://<bucket_name>/models/Qwen-VL-Chat/ ├──
改代码如图3。 图3 多机同步权重文件 代码上传至OBS 将llm_train文件上传至OBS中。 结合准备数据、准备权重、准备代码,将数据集、原始权重、代码文件都上传至OBS后,OBS桶的目录结构如下。 <bucket_name> |──llm_train
编辑完成之后单击“确定”。 关联资产 在输入框中输入资产ID后,单击“关联”即可关联其他资产,更方便其他使用者进行查找。算法可以关联数据集资产。 选择“关联资产”,在输入框中输入待关联资产的ID,单击“关联”。 在弹出的“资产信息”页面,单击“确定”即可关联资产。 可见范围设置