检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
互式SQL分析及数据虚拟化引擎,能够与大数据生态无缝融合,实现海量数据的秒级交互式查询。 DLI+HetuEngine能够快速处理大规模数据集的查询请求,迅速和高效从大数据中提取信息,极大地简化了数据的管理和分析流程,提升大数据环境下的索引和查询性能。 TB级数据秒级响应: He
使用Notebook实例提交DLI作业 Notebook是基于开源JupyterLab进行了深度优化的交互式数据分析挖掘模块,提供在线的开发和调试能力,用于编写和调测模型训练代码。完成DLI对接Notebook实例后,您可以基于Notebook提供的Web交互的开发环境同时完成代
成的目录创建非DLI表,通过DLI SQL进行下一步处理分析,并且输出数据目录支持分区表结构。适用于数据转储、大数据分析、备份或活跃归档、深度或冷归档等场景。 语法格式 1 2 3 4 5 6 7 create table filesystemSink ( attr_name
FileSystem sink用于将数据输出到分布式文件系统HDFS或者对象存储服务OBS等文件系统。适用于数据转储、大数据分析、备份或活跃归档、深度或冷归档等场景。 考虑到输入流可以是无界的,每个桶中的数据被组织成有限大小的Part文件。完全可以配置为基于时间的方式往桶中写入数据,比如
FileSystem sink用于将数据输出到分布式文件系统HDFS或者对象存储服务OBS等文件系统。适用于数据转储、大数据分析、备份或活跃归档、深度或冷归档等场景。 考虑到输入流可以是无界的,每个桶中的数据被组织成有限大小的Part文件。完全可以配置为基于时间的方式往桶中写入数据,比如
资源管理和作业调度。 支持多种数据源和格式,提供了丰富的数据处理能力,包括但不限于SQL查询、机器学习等。详细操作请参考创建Spark作业。 适用于大规模数据处理和分析,如机器学习训练、日志分析、大规模数据挖掘等场景。 管理Jar作业的程序包 DLI允许用户提交编译为Jar包的F
如何通过JDBC设置spark.sql.shuffle.partitions参数提高并行度 操作场景 Spark作业在执行shuffle类语句,包括group by、join等场景时,常常会出现数据倾斜的问题,导致作业任务执行缓慢。 该问题可以通过设置spark.sql.shuffle
出一个基于 TUMBLE Window TVF 的窗口连接的例子。 在下面的例子中,通过将 join 的时间区域限定为固定的 5 分钟,数据集被分成两个不同的时间窗口:[12:00,12:05) 和 [12:05,12:10)。L2 和 R2 不能 join 在一起是因为它们不在一个窗口中。
Flink 1.15版本新增读写Hive、Hudi等Connector。 Flink 1.15版本数据同步迁移场景,优先推荐使用DataArts的数据集成。 Flink 1.15版本支持集成DEW-CSMS凭证管理,提供隐私保护方案。 Flink 1.15版本支持Flink Jar作业最小化提交。
Maxwell Format 功能描述 Flink 支持将 Maxwell JSON 消息解释为 INSERT/UPDATE/DELETE 消息到 Flink SQL 系统中。在许多情况下,这对于利用此功能很有用。 例如: 将数据库中的增量数据同步到其他系统 审计日志 数据库的实时物化视图
创建函数 功能描述 DLI支持创建使用UDF和UDTF等自定义函数应用于Spark作业开发当中。 具体使用自定义函数端到端的开发指导可以参考:Spark SQL作业使用UDF和Spark SQL作业使用UDTF。 语法格式 1 2 3 4 5 CREATE FUNCTION [db_name
源和时间,导致处理速度变慢,出现数据倾斜。 JOIN 操作倾斜 在执行表JOIN操作时,参与JOIN的键在某个表中分布极不均匀,导致大量数据集中在少数几个任务中处理,而其他任务则已完成,造成数据倾斜。 Group By数据倾斜解决方案 取部分数据执行select count(*)
使用DLI分析电商实时业务数据 应用场景 当前线上购物无疑是最火热的购物方式,而电商平台则又可以以多种方式接入,例如通过web方式访问、通过app的方式访问、通过微信小程序的方式访问等等。而电商平台则需要每天统计各平台的实时访问数据量、订单数、访问人数等等指标,从而能在显示大屏上
Spark生态和接口,性能较开源提升了2.5倍,在小时级即可实现EB级数据查询分析。 Flink是一款分布式的计算引擎,可以用来做批处理,即处理静态的数据集、历史的数据集;也可以用来做流处理,即实时地处理一些实时数据流,实时地产生数据的结果。DLI在开源Flink基础上进行了特性增强和安全增强,提供了数据处理所必须的Stream
Upsert Kafka结果表 功能描述 Apache Kafka是一个快速、可扩展的、高吞吐、可容错的分布式发布订阅消息系统,具有高吞吐量、内置分区、支持数据副本和容错的特性,适合在大规模消息处理场景中使用。DLI将Flink作业的输出数据以upsert的模式输出到Kafka中。
Spark如何将数据写入到DLI表中 使用Spark将数据写入到DLI表中,主要设置如下参数: fs.obs.access.key fs.obs.secret.key fs.obs.impl fs.obs.endpoint 示例如下: import logging from operator
时间函数 Flink OpenSource SQL所支持的时间函数如表1所示。 函数说明 表1 时间函数 函数 返回值 描述 DATE string DATE 将日期字符串以"yyyy-MM-dd"的形式解析为SQL日期。 TIME string TIME 将时间字符串以"HH:mm:ss[
DWS源表 功能描述 DLI将Flink作业从数据仓库服务(DWS)中读取数据。DWS数据库内核兼容PostgreSQL,PostgreSQL数据库可存储更加复杂类型的数据,支持空间信息服务、多版本并发控制(MVCC)、高并发,适用场景包括位置应用、金融保险、互联网电商等。 数据仓库服务(Data
原生数据类型 DLI支持原生数据类型,请参见表1。 表1 原生数据类型 数据类型 描述 存储空间 范围 OBS表支持情况 DLI表支持情况 INT 有符号整数 4字节 -2147483648~2147483647 是 是 STRING 字符串 - - 是 是 FLOAT 单精度浮点型
导出数据(废弃) 功能介绍 该API用于从DLI表中导出数据到文件。 该API为异步操作。 目前只支持从DLI表导出数据到OBS中,且导出的路径必须指定到文件夹级别。OBS路径中不支持逗号,且其中的桶名不能以正则格式“.[0-9]+(.*)”结尾,即,若桶名包含“.”, 则最后一个“