检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
Gallery微调大师训练模型 AI Gallery支持将模型进行微调,训练后得到更优模型。 场景描述 模型微调是深度学习中的一种重要技术,它是指在预训练好的模型基础上,通过调整部分参数,使其在特定任务上达到更好的性能。 在实际应用中,预训练模型是在大规模通用数据集上训练得到的,而在特定任务上,这些模型的
GPU裸金属服务器更换NVIDIA驱动后执行nvidia-smi提示Failed to initialize NVML 问题现象 华为云裸金属服务器,NVIDIA驱动卸载后重新安装。 (1)已卸载原有版本NVIDIA驱动和CUDA版本,且已安装新版本的NVIDIA驱动和CUDA版本
x内核模块,它允许支持P2P(Peer-to-Peer)的NVIDIA GPU直接进行内存访问(DMA)。这意味着数据可以直接在多个GPU之间传输,而无需经过CPU或系统内存,这可以显著降低延迟并提高带宽。 所以既然nccl-tests能正常测试, 但是达不到预期,可能是nv_peer_mem异常。
将模型复制到多个GPU上 将一个Batch的数据均分到每一个GPU上 各GPU上的模型进行前向传播,得到输出 主GPU(逻辑序号为0)收集各GPU的输出,汇总后计算损失 分发损失,各GPU各自反向传播梯度 主GPU收集梯度并更新参数,将更新后的模型参数分发到各GPU 具体流程图如下:
nsor.to(device="cuda:7")",将张量搬到了7号GPU卡上,超过了实际可用的ID号。 如果cuda相关运算设置的卡ID号在所选规格范围内,但是依旧出现了上述报错。可能是该资源节点中存在GPU卡损坏的情况,导致实际能检测到的卡少于所选规格。 处理方法 建议直接根
日志提示Custom op has no reg_op_name attr 问题现象 日志提示:Custom op has no reg_op_name attr。 图1 报错提示 原因分析 无。 处理方法 定义context时无需指定: context.ascend.provider
分页查询智能任务列表 功能介绍 分页查询智能任务列表,包括“智能标注”和“自动分组”两大类智能任务。可通过指定“type”参数来单独查询某类任务的列表。 “智能标注”是指基于当前标注阶段的标签及图片学习训练,选中系统中已有的模型进行智能标注,快速完成剩余图片的标注操作。“智能标注”又包含“主动学习”和“预标注”两类。
GPU裸金属服务器无法Ping通如何解决 问题现象 在华为云使用GPU裸金属服务器时, 服务器绑定EIP(华为云弹性IP服务)后,出现无法ping通弹性公网IP现象。 原因分析 查看当前GPU裸金属服务器的安全组的入方向规则的配置,发现仅开通了TCP协议的22端口。 ping命令
比对NPU和GPU预检结果。 msprobe -f pytorch api_precision_compare -npu /home/xxx/npu/accuracy_checking_details_{timestamp}.csv -gpu /home/xxx/gpu/accur
upyterLab开发模型。 配置本地IDE(Pycharm或者VSCode)联接云上环境调试请参考使用本地IDE开发模型。 父主题: GPU相关问题
GPU A系列裸金属服务器如何更换NVIDIA和CUDA? 场景描述 当裸金属服务器预置的NVIDIA版本和业务需求不匹配时,需要更换NVIDIA驱动和CUDA版本。本文介绍华为云A系列GPU裸金属服务器(Ubuntu20.04系统)如何从“NVIDIA 525+CUDA 12.0”更换为“NVIDIA
盘容量最大。建议下载数据和中间数据都存到这个目录中,防止因硬盘占满导致任务失败。 父主题: 基于ModelArts Standard运行GPU训练作业
示例:从 0 到 1 制作自定义镜像并用于训练(MPI+CPU/GPU) 本章节介绍如何从0到1制作镜像,并使用该镜像在ModelArts平台上进行训练。镜像中使用的AI引擎是MPI,训练使用的资源是CPU或GPU。 本实践教程仅适用于新版训练作业。 场景描述 本示例使用Linux
upyterLab开发模型。 配置本地IDE(Pycharm或者VSCode)联接云上环境调试请参考使用本地IDE开发模型。 父主题: GPU相关问题
msprobe工具使用指导 msprobe API预检 msprobe精度比对 msprobe梯度监控 父主题: GPU业务迁移至昇腾训练推理
场景介绍 当Lite Cluster资源池中的节点含有GPU/Ascend资源时,用户基于自己的业务,可能会有自定义GPU/Ascend驱动的需求,ModelArts面向此类客户提供了自助Lite Cluster资源池升级节点GPU/Ascend驱动的能力。 约束限制 Lite Cl
训练性能测试 流程图 训练性能测试流程图如下图所示: 图1 训练性能测试流程 执行性能比较脚本 完成benchmark启动任务。 进入test-benchmark目录执行命令。 ascendfactory-cli performance <cfgs_yaml_file> --baseline
Standard模型训练提供容器化服务和计算资源管理能力,负责建立和管理机器学习训练工作负载所需的基础设施,减轻用户的负担,为用户提供灵活、稳定、易用和极致性能的深度学习训练环境。通过ModelArts Standard模型训练,用户可以专注于开发、训练和微调模型。 ModelArts Standard
训练性能测试 流程图 训练性能测试流程图如下图所示: 图1 训练性能测试流程 执行训练任务 进入test-benchmark目录执行训练命令,可以多次执行,卡数及其它配置参考NPU卡数取值表按自己实际情况决定。 单机<可选>: # 默认8卡 benchmark-cli train
GPU A系列裸金属服务器无法获取显卡如何解决 问题现象 在A系列裸金属服务器上使用PyTorch一段时间后,出现获取显卡失败的现象,报错如下: > torch.cuda.is_available() /usr/local/lib/python3.8/dist-packages/torch/cuda/__init__