检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
数据。 训练模型 图1 模型训练 在“模型训练”页面配置训练参数,开始训练模型。 在“参数配置”填写“学习率”、“训练轮次”和“分批训练样本数”。 “学习率”用来控制模型的学习速度,范围为(0,1]。 “训练轮次”指模型训练中遍历数据集的次数。 “分批训练样本数”又叫批尺寸(Batch
高精度:大部分模型的准确率高于90%。 少数据:训练所需的数据量更少。 智能标注:提升标注效率。 极致性能 依托ModelArts 基础平台,深度软硬件协同。 资源秒级调度,按需使用。 训练任务性能提升30%。 灵活开放 灵活的部署方式:支持在线部署、边缘部署、Hilens部署等多种部署方式。
练模型”列表中可查看“模型精度”、“推理速度”、“训练速度”和模型“简介”。 参数配置 在“参数配置”填写“学习率”、“训练轮次”和“语种”。 “学习率”用来控制模型的学习速度,范围为(0,1]。 “训练轮次”指模型训练中遍历数据集的次数。 “语种”指文本数据的语言种类。 确认信息后,单击“开始训练”。
预训练模型”列表中可查看“模型精度”、“推理速度”、“训练速度”和模型“简介”。 参数配置 在“参数配置”填写“学习率”和“训练轮次”。 “学习率”用来控制模型的学习速度,范围为(0,1]。 “训练轮次”指模型训练中遍历数据集的次数。 确认信息后,单击“开始训练”。 模型训练一般
什么是ModelArts Pro? 与其他云服务的关系 OBS 2.0支持资源池 使用ModelArts Pro进行应用开发时,需要使用一些CPU、GPU或Ascend资源进行数据处理、模型训练以及服务部署。为满足不同开发业务,ModelArts提供了按需付费的公共资源池和无需排队的专属资源池供ModelArts
检查不同标签的样本数是否均衡,建议不同标签的样本数量级相同,并尽量接近,如果有的类别数据量很高,有的类别数据量较低,会影响模型整体的识别效果。 选择适当的学习率和训练轮次。 通过详细评估中的错误识别示例,有针对性地扩充训练数据。 后续操作 模型训练完成后,单击“下一步”,进入应用开发的“模型评估”步骤,详细操作指引请参见评估模型。
检查不同标签的样本数是否均衡,建议不同标签的样本数量级相同,并尽量接近,如果有的类别数据量很高,有的类别数据量较低,会影响模型整体的识别效果。 选择适当的学习率和训练轮次。 通过详细评估中的错误识别示例,有针对性地扩充训练数据。 后续操作 模型训练完成后,单击“下一步”,进入应用开发的“模型评估”步骤,详细操作指引请参见评估模型。
检查不同标签的样本数是否均衡,建议不同标签的样本数量级相同,并尽量接近,如果有的类别数据量很高,有的类别数据量较低,会影响模型整体的识别效果。 选择适当的学习率和训练轮次。 通过详细评估中的错误识别示例,有针对性地扩充训练数据。 后续操作 模型训练完成后,单击“下一步”,进入应用开发的“模型评估”步骤,详细操作指引请参见评估模型。
检查不同标签的样本数是否均衡,建议不同标签的样本数量级相同,并尽量接近,如果有的类别数据量很高,有的类别数据量较低,会影响模型整体的识别效果。 选择适当的学习率和训练轮次。 通过详细评估中的错误识别示例,有针对性地扩充训练数据。 后续操作 模型训练完成后,单击“下一步”,进入应用开发的“模型评估”步骤,详细操作指引请参见评估模型。
检查不同标签的样本数是否均衡,建议不同标签的样本数量级相同,并尽量接近,如果有的类别数据量很高,有的类别数据量较低,会影响模型整体的识别效果。 选择适当的学习率和训练轮次。 通过详细评估中的错误识别示例,有针对性地扩充训练数据。 后续操作 模型训练完成后,单击“下一步”,进入应用开发的“模型评估”步骤,详细操作指引请参见评估模型。
检查不同标签的样本数是否均衡,建议不同标签的样本数量级相同,并尽量接近,如果有的类别数据量很高,有的类别数据量较低,会影响模型整体的识别效果。 选择适当的学习率和训练轮次。 通过详细评估中的错误识别示例,有针对性地扩充训练数据。 后续操作 模型训练完成后,单击“下一步”,进入应用开发的“模型评估”步骤,详细操作指引请参见评估模型。
当前服务提供预置预训练模型“BERT”、“TinyBERT”、“FastText”。本样例使用“FastText”模型。 在参数配置,填写“学习率”和“训练轮次”。 本样例使用“学习率”为“0.00001”,“训练轮次”为“3”。 单击右下角的“开始训练”,开始训练模型。 模型训练一般需要运行一段时间
为保证模型的泛化能力,数据集尽量覆盖可能出现的各种场景。 数据集样本数应大于100,用于测试的已标注数据应不少于20张,样本数达1万张以上性能更优。 为了准确率,建议数据集中标注数据占总数据量的10%,用于测试模型,其余90%无需标注。 针对未标注数据,要求将图片放在一个目录里,示例如下所示。
会影响模型整体的识别效果。 如果分割效果不好,建议检测图片标注,标注质量的好坏直接影响模型训练图像分割效果的好坏。 根据数据量选择适当的学习率和训练轮次。 通过详细评估中的错误识别示例,有针对性地扩充训练数据。 后续操作 更新版本后,您可以在“应用详情”页的开发版本列表查看当前
检查不同标签的样本数是否均衡,建议不同标签的样本数量级相同,并尽量接近,如果有的类别数据量很高,有的类别数据量较低,会影响模型整体的识别效果。 选择适当的学习率和训练轮次。 通过详细评估中的错误识别示例,有针对性地扩充训练数据。 后续操作 更新版本后,您可以在“应用详情”页的开发版本列表查看当前
集比例”等于1。 “训练集比例”即用于训练模型的样本数据比例;“验证集比例”即用于验证模型的样本数据比例。“训练验证比例”会影响训练模板的性能。 “描述” 针对当前发布的数据集版本的描述信息。 “开启难例属性” 仅“图像分类”和“物体检测”类型数据集支持难例属性。 默认不开启。启
为保证模型的泛化能力,数据集尽量覆盖可能出现的各种场景。 数据集样本数应大于100,用于测试的已标注数据应不少于20张,样本数达1万张以上性能更优。 为了准确率,建议数据集中标注数据占总数据量的10%,用于测试模型,其余90%无需标注。 针对未标注数据,要求将图片放在一个目录里,示例如下所示。