检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
适合于深度学习、科学计算、CAE等。 为了保障GPU加速型云服务器高可靠、高可用和高性能,该类型云服务器的公共镜像中会默认预置带GPU监控的CES Agent。正常使用GPU监控功能还需完成配置委托,详细操作,请参见如何配置委托?。 如需手动移除GPU监控功能,可登录GPU加速型云服务器并执行卸载命令:bash
通过nvidia.com/gpu指定申请GPU的数量,支持申请设置为小于1的数量,比如nvidia.com/gpu: 0.5,这样可以多个Pod共享使用GPU。GPU数量小于1时,不支持跨GPU分配,如0.5 GPU只会分配到一张卡上。 使用nvidia.com/gpu参数指定GPU数量时,re
基于上一步完成的性能测试,为了最大化模型推理性能,首先确保当前使用的CANN版本是最新版本(最新版本请见此处),每个迭代的CANN版本都有一定的性能收益。在此基础上,可以进行三板斧自助工具式性能调优。这些调优过程由大量的项目交付经验总结,帮助您获得模型最佳推理性能,重复性能测试章节可以验证对应的收益情况。
性能调优 单模型性能测试工具Mindspore lite benchmark 单模型性能调优AOE 父主题: 基于AIGC模型的GPU推理业务迁移至昇腾指导
对于GPU和NPU性能比对、NPU多次训练之间性能比对的场景,昇腾提供了性能比对工具compare_tools,通过对训练耗时和内存占用的比对分析,定位到具体劣化的算子,帮助用户提升性能调优的效率。工具将训练耗时拆分为计算、通信、调度三大维度,并针对计算和通信分别进行算子级别的
性能调优 算子优化 为了更好地发挥昇腾设备的性能,将ChatGLM-6B原模型中的部分算子替换成了NPU亲和的算子,修改的是modeling_chatglm.py文件,下图通过对比列举了对应的修改方式,图示中左边为原始方式,右边为修改后的方式。 使用torch.bmm替换torch
GPU驱动概述 GPU驱动概述 在使用GPU加速型实例前,请确保实例已安装GPU驱动以获得相应的GPU加速能力。 GPU加速型实例支持两种类型的驱动:GRID驱动和Tesla驱动。 当前已支持使用自动化脚本安装GPU驱动,建议优先使用自动安装方式,脚本获取以及安装指导请参考(推荐
性能调优 Profiling数据采集 使用Advisor工具分析生成调优建议 调优前后性能对比 父主题: Dit模型Pytorch迁移与精度性能调优
Host算子下发和Device算子执行 综上所述,性能优化的总体原则为:减少Host算子下发时间、减少Device算子执行时间。 训练代码迁移完成后,如存在性能不达标的问题,可参考下图所示流程进行优化。建议按照单卡、单机多卡、多机多卡的流程逐步做性能调优。 图2 性能调优总体思路 为了便于用户快速进
PyTorch迁移性能调优 性能调优总体原则和思路 MA-Advisor和Ascend-Insigh工具使用指导 性能可视化工具与性能分析工具 父主题: GPU训练业务迁移至昇腾的通用指导
/nvidia-smi 若能正常返回GPU信息,说明设备可用,插件安装成功。 GPU驱动支持列表 当前GPU驱动支持列表仅针对1.2.28及以上版本的GPU插件。 如果您需要安装最新版本的GPU驱动,请将您的GPU插件升级到最新版本。 表2 GPU驱动支持列表 GPU型号 支持集群类型 机型规格
调优前后性能对比 在完成上一章几类调优方式之后,在单卡场景下实测性能调优比对结果如下表所示: 设备 batch_size Steps/Sec 1p-GPU A800 16 3.17 1p-NPU snt9b 313T 16 2.17 1p-NPU snt9b 313T调优后 16
alloc()等。 受GPU虚拟化技术的限制,容器内应用程序初始化时,通过nvidia-smi监测工具监测到的实时算力可能超过容器可用的算力上限。 节点上开启了GPU虚拟化且有多张GPU卡时,如果GPU资源不足,不支持抢占其他Pod的GPU资源。 创建GPU虚拟化应用 通过控制台创建
同时会在aoe_output路径下输出对应的mindir模型,由于当前模型并没有吸收知识库信息,所以性能不佳,因此需要在保留AOE知识库的情况下,再次进行转换,以达到较优性能。 删除编译缓存atc_data。 注意相比第一次清除缓存操作,本次保留了AOE知识库。 #shell #
单模型性能测试工具Mindspore lite benchmark 在模型精度对齐后,针对Stable Diffusion模型性能调优,您可以通过AOE工具进行自助性能调优,进一步可以通过profiling工具对于性能瓶颈进行分析,并针对性的做一些调优操作。 您可以直接使用ben
使用DCS实现排行榜功能 方案概述 在网页和APP中经常需要用到榜单的功能,对某个key-value的列表进行降序显示。当操作和查询并发大的时候,使用传统数据库就会遇到性能瓶颈,造成较大的时延。 使用分布式缓存服务(DCS)的Redis版本,可以实现一个商品热销排行榜的功能。它的优势在于:
(推荐)自动安装GPU加速型ECS的GPU驱动(Linux) 操作场景 在使用GPU加速型实例时,需确保实例已安装GPU驱动,否则无法获得相应的GPU加速能力。 本节内容介绍如何在GPU加速型Linux实例上通过脚本自动安装GPU驱动。 使用须知 本操作仅支持Linux操作系统。
排行榜 排行榜是文本组件的一种,用于根据一定的条件,描述数据的先后关系。 在大屏设计页面,从“全部组件 > 文本”中,拖拽“排行榜”组件至画布空白区域,如图1。 图1 排行榜 图2 边距样式说明 卡片 卡片是指包裹图表组件的外层架构,可以理解为组件由卡片中基础元素(卡片标题、图表、卡片背景、卡片边框)和图表元素构成。
Adviso主页面 提交性能诊断任务 如果您的NPU性能数据存放在OBS上,Source选择OBS,Path输入OBS地址,格式如obs://bucket1/profiling_dir1,单击Submit按钮。界面参考下图。 图4 分析OBS上的性能数据 如果您的NPU性能数据存放在Not
(推荐)自动安装GPU加速型ECS的GPU驱动(Windows) 操作场景 在使用GPU加速型实例时,需确保实例已安装GPU驱动,否则无法获得相应的GPU加速能力。 本节内容介绍如何在GPU加速型Windows实例上通过脚本自动安装GPU驱动。 使用须知 如果GPU加速型实例已安装