检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
表示张量并行。 PP 1 表示流水线并行。一般此值与训练节点数相等,与权重转换时设置的值相等。 LR 2.5e-5 学习率设置。 MIN_LR 2.5e-6 最小学习率设置。 SEQ_LEN 4096 要处理的最大序列长度。 MAX_PE 8192 设置模型能够处理的最大序列长度。
多信息请参见《对象存储服务产品文档》。 表1 ModelArts各环节与OBS的关系 功能 子任务 ModelArts与OBS的关系 自动学习 数据标注 ModelArts标注的数据存储在OBS中。 自动训练 训练作业结束后,其生成的模型存储在OBS中。 部署上线 ModelAr
信息请参见《对象存储服务控制台指南》。 表1 ModelArts各环节与OBS的关系 功能 子任务 ModelArts与OBS的关系 自动学习 数据标注 ModelArts标注的数据存储在OBS中。 自动训练 训练作业结束后,其生成的模型存储在OBS中。 部署上线 ModelAr
内置属性:图像尺寸(图像的宽度、高度、深度),类型为List[/topic/body/section/table/tgroup/tbody/row/entry/p/br {""}) (br]。列表中的第一个数字为宽度(像素),第二个数字为高度(像素),第三个数字为深度(深度可以没有,默认为3),如[100
内置属性:图像尺寸(图像的宽度、高度、深度),类型为List[/topic/body/section/table/tgroup/tbody/row/entry/p/br {""}) (br]。列表中的第一个数字为宽度(像素),第二个数字为高度(像素),第三个数字为深度(深度可以没有,默认为3),如[100
影响其他租户。 ModelArts服务具备资源池和隔离能力,避免单租户资源被攻击导致爆炸半径过大风险。 ModelArts服务定义并维护了性能规格用于自身的抗攻击性。例如:设置API访问限制,防止恶意接口调用等场景。 ModelArts服务在攻击场景下,具备告警能力及自我保护能力。
in/saved_dir_for_output/llama2-13b/saved_models/。 最后,请参考查看日志和性能章节查看lora微调的日志和性能。 步骤五 删除config.yaml创建出的所有工作负载Pod 若要删除config.yaml创建出的所有工作负载Pod,需要先找到config
source_job_version String 来源训练作业的版本。 source_type String 模型来源的类型。 当模型为自动学习部署过来时,取值为“auto”。 当模型是用户通过训练作业或OBS模型文件部署时,此值为空。 model_type String 模型类型
infer.py --model yolov8n.mindir infer.py是NPU上使用MindSpore Lite推理的样例,与GPU推理代码区别主要参考infer函数,不同业务场景需根据实际情况做相应修改。infer.py文件预置在AscendCloud-CV-6.3.909-xxx
法完全满足众多开发者的新特性需求。基于服务演进,ModelArts团队已于2021年上线新版训练,力求解决存在的历史问题,并为新特性提供高性能、高易用、可扩展、可演进的底座,给用户提供更好的AI训练体验,打造易用、高效的AI平台。 下线旧版训练管理对现有用户的使用是否有影响? 正
2-py_3.7-ubuntu_18.04-x86_64)。 “资源池”:选择公共资源池或专属资源池,此处以公共资源池为例。 “类型”:推荐选择GPU。 “规格”:推荐选择GP Tnt004规格,如果没有再选择其他规格。 参数填写完成后,单击“立即创建”进行规格确认。参数确认无误后,单击
# 模型名称 |── logs # 训练过程中日志(loss、吞吐性能) |—— saved_models |──
in/saved_dir_for_output/llama2-13b/saved_models/。 最后,请参考查看日志和性能章节查看lora微调的日志和性能。 步骤五 删除config.yaml创建出的所有工作负载Pod 若要删除config.yaml创建出的所有工作负载Pod,需要先找到config
in/saved_dir_for_output/llama2-13b/saved_models/。 最后,请参考查看日志和性能章节查看sft微调的日志和性能。 步骤五 删除config.yaml创建出的所有工作负载Pod 若要删除config.yaml创建出的所有工作负载Pod,需要先找到config
ain/saved_dir_for_output/llama2-13b/saved_models/。 最后,请参考查看日志和性能章节查看预训练的日志和性能。 步骤五 删除config.yaml创建出的所有工作负载Pod 若要删除config.yaml创建出的所有工作负载Pod,需要先找到config
├──benchmark_tools #性能评测 ├── benchmark.py # 可以基于默认的参数跑完静态benchmark和动态benchmark ├── benchmark_parallel.py # 评测静态性能脚本
in/saved_dir_for_output/llama2-13b/saved_models/。 最后,请参考查看日志和性能章节查看sft微调的日志和性能。 步骤五 删除config.yaml创建出的所有工作负载Pod 若要删除config.yaml创建出的所有工作负载Pod,需要先找到config
in/saved_dir_for_output/llama2-13b/saved_models/。 最后,请参考查看日志和性能章节查看lora微调的日志和性能。 步骤五 删除config.yaml创建出的所有工作负载Pod 若要删除config.yaml创建出的所有工作负载Pod,需要先找到config
in/saved_dir_for_output/llama2-13b/saved_models/。 最后,请参考查看日志和性能章节查看sft微调的日志和性能。 步骤五 删除config.yaml创建出的所有工作负载Pod 若要删除config.yaml创建出的所有工作负载Pod,需要先找到config
# 模型名称 |── logs # 训练过程中日志(loss、吞吐性能) |—— saved_models |──