检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
集群类型。 本章节以HBase查询集群为例介绍如何快速购买一个MRS集群。HBase集群使用Hadoop和HBase组件提供一个稳定可靠,性能优异、可伸缩、面向列的分布式云存储系统,适用于海量数据存储以及分布式计算的场景,用户可以利用HBase搭建起TB至PB级数据规模的存储系统
中,例如: 数据序列化 配置内存 设置并行度 使用External Shuffle Service提升性能 在做Spark Streaming的性能优化时需注意一点,越追求性能上的优化,Streaming整体的可靠性会越差。例如: “spark.streaming.receiver
YARN基本原理 为了实现一个Hadoop集群的集群共享、可伸缩性和可靠性,并消除早期MapReduce框架中的JobTracker性能瓶颈,开源社区引入了统一的资源管理框架YARN。 YARN是将JobTracker的两个主要功能(资源管理和作业调度/监控)分离,主要方法是创建
运行情况。 查看Flink应用调测结果 调优程序 您可以根据程序运行情况,对程序进行调优,使其性能满足业务场景需求。 调优完成后,请重新进行编译和运行。 组件操作指南中的“Flink性能调优” 父主题: Flink开发指南(安全模式)
运行情况。 查看Flink应用调测结果 调优程序 您可以根据程序运行情况,对程序进行调优,使其性能满足业务场景需求。 调优完成后,请重新进行编译和运行。 组件操作指南中的“Flink性能调优” 父主题: Flink开发指南(安全模式)
HBase应用开发简介 HBase简介 HBase是一个高可靠性、高性能、面向列、可伸缩的分布式存储系统。HBase设计目标是用来解决关系型数据库在处理海量数据时的局限性。 HBase使用场景有如下几个特点: 处理海量数据(TB或PB级别以上)。 具有高吞吐量。 在海量数据中实现高效的随机读取。
设置合理数量的存储组可以带来性能的提升。既不会因为产生过多的存储文件(夹)导致频繁切换IO降低系统速度(并且会占用大量内存且出现频繁的内存-文件切换),也不会因为过少的存储文件夹(降低了并发度)导致写入命令阻塞。 用户应根据自己的数据规模和使用场景,平衡存储文件的存储组设置,以达到更好的系统性能。 时间序列
维度基数从小到大来排列。数据是按照主键排序存储的,查询的时候,通过主键可以快速筛选数据,合理的主键设计,能够大大减少读取的数据量,提升查询性能。例如所有的分析,都需要指定业务的id,则可以将业务id字段作为主键的第一个字段顺序。 根据业务场景合理设计稀疏索引粒度 ClickHou
HBase应用开发简介 HBase简介 HBase是一个高可靠性、高性能、面向列、可伸缩的分布式存储系统。HBase设计目标是解决关系型数据库在处理海量数据时的局限性。 HBase使用场景有如下几个特点: 处理海量数据(TB或PB级别以上)。 具有高吞吐量。 在海量数据中实现高效的随机读取。
HBase应用开发简介 HBase简介 HBase是一个高可靠性、高性能、面向列、可伸缩的分布式存储系统。HBase设计目标是解决关系型数据库在处理海量数据时的局限性。 HBase使用场景有如下几个特点: 处理海量数据(TB或PB级别以上)。 具有高吞吐量。 在海量数据中实现高效的随机读取。
size 多路读取线程池的大小,设置参数值大于0时启用多路读功能。 200 大于等于0 由于HDFS多路读功能在磁盘IO负载高的情况下可能导致性能劣化,在此场景下,HBase侧需要参考操作步骤关闭HDFS多路读功能。 操作步骤 登录FusionInsight Manager页面。 选择“集群
配置HDFS快速关闭文件功能 操作场景 默认情况下关闭HDFS文件时需要等待所有的Block都上报成功(处于COMPLETED状态)。因此HDFS的一部分写性能消耗为等待DataNode块上报以及NameNode处理块上报。对于一个负载较大的集群,等待的消耗对集群影响较大。HDFS可以通过配置NameNode参数“dfs
HBase应用开发简介 HBase介绍 HBase是一个高可靠性、高性能、面向列、可伸缩的分布式存储系统。HBase设计目标是用来解决关系型数据库在处理海量数据时的局限性。 HBase使用场景有如下几个特点: 处理海量数据(TB或PB级别以上)。 具有高吞吐量。 在海量数据中实现高效的随机读取。
HBase应用开发简介 HBase介绍 HBase是一个高可靠性、高性能、面向列、可伸缩的分布式存储系统。HBase设计目标是用来解决关系型数据库在处理海量数据时的局限性。 HBase使用场景有如下几个特点: 处理海量数据(TB或PB级别以上)。 具有高吞吐量。 在海量数据中实现高效的随机读取。
快速使用HBase进行离线数据分析 HBase是一个高可靠性、高性能、面向列、可伸缩的分布式存储系统。本章节提供从零开始使用HBase的操作指导,通过客户端实现创建表,往表中插入数据,修改表,读取表数据,删除表中数据以及删除表的功能。 背景信息 假定用户开发一个应用程序,用于管理
提供了两种有限的共享变量:广播变量、累加器。 在对性能要求比较高的场景下,可以使用Kryo优化序列化性能 Spark提供了两种序列化实现: org.apache.spark.serializer.KryoSerializer:性能好,兼容性差 org.apache.spark.serializer
程序运行结果会写在用户指定的路径下。用户还可以通过UI查看应用运行情况。 调优程序 您可以根据程序运行情况,对程序进行调优,使其性能满足业务场景诉求。 调优完成后,请重新进行编译和运行。 Spark2x性能调优 父主题: Spark2x开发指南(普通模式)
请参见使用Get API读取HBase表数据。 5 根据用户姓名进行查询。 请参见使用Filter过滤器读取HBase表数据。 6 为提升查询性能,创建二级索引或者删除二级索引。 请参见创建HBase表二级索引和基于二级索引查询HBase表数据。 7 用户销户,删除用户信息表中该用户的数据。
请参见使用Get API读取HBase表数据。 5 根据用户姓名进行查询。 请参见使用Filter过滤器读取HBase表数据。 6 为提升查询性能,创建二级索引或者删除二级索引。 请参见创建HBase表二级索引和基于二级索引查询HBase表数据。 7 用户销户,删除用户信息表中该用户的数据。
快速开发HBase应用 HBase是一个高可靠性、高性能、面向列、可伸缩的分布式存储系统。HBase设计目标是用来解决关系型数据库在处理海量数据时的局限性。 HBase使用场景有如下几个特点: 处理海量数据(TB或PB级别以上)。 具有高吞吐量。 在海量数据中实现高效的随机读取。