检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
GPU故障处理 前提条件 如需将GPU事件同步上报至AOM,集群中需安装云原生日志采集插件,您可前往AOM服务查看GPU插件隔离事件。 GPU插件隔离事件 当GPU显卡出现异常时,系统会将出现问题的GPU设备进行隔离,详细事件如表1所示。 表1 GPU插件隔离事件 事件原因 详细信息
Hudi写入小精度Decimal数据失败 问题 Hudi表初始入库采用BULK_INSERT方式入库含有Decimal类型的数据,之后执行upsert,数据写入时报错: java.lang.UnsupportedOperationException: org.apache.parquet
型完成简单的图像分类。 父主题: 基于CodeArts IDE Online、TensorFlow和Jupyter Notebook开发深度学习模型
到GPU。 处理方法 根据报错提示,请您排查代码,是否已添加以下配置,设置该程序可见的GPU: os.environ['CUDA_VISIBLE_DEVICES'] = '0,1,2,3,4,5,6,7' 其中,0为服务器的GPU编号,可以为0,1,2,3等,表明对程序可见的GP
图1 netron中查看inputShape 精度选择。 精度选择需要在模型转换阶段进行配置,执行converter_lite命令时通过--configFile参数指定配置文件路径,配置文件通过precision_mode参数指定精度模式。可选的参数有“enforce_fp32”
在“GPU配置”中找到“节点池配置”,并选择新增的目标节点池。 参考准备GPU虚拟化资源,选择满足GPU虚拟化要求的驱动,并开启支持GPU虚拟化。 图1 异构资源配置 单击“确认配置”进行保存。 步骤三:创建GPU虚拟化负载并扩容 参考使用GPU虚拟化章节,创建使用GPU虚拟化
onnx_pipeline.py 生成的图片fantasy_landscape.png会保存在当前路径下,该图片也可以作为后期精度校验的一个对比。 图2 生成图片 父主题: 基于AIGC模型的GPU推理业务迁移至昇腾指导
GPU实例故障处理流程 GPU实例故障处理流程如图1所示,对应的操作方法如下: CES监控事件通知:配置GPU的CES监控后会产生故障事件通知。 故障信息收集:可使用GPU故障信息收集脚本一键收集,也可参考故障信息收集执行命令行收集。 GPU实例故障分类列表:根据错误信息在故障分类列表中识别故障类型。
msprobe工具使用指导 msprobe API预检 msprobe精度比对 msprobe梯度监控 父主题: GPU业务迁移至昇腾训练推理
PU”,配置GPU参数。 表1 GPU参数说明 参数名称 说明 GPU卡型 当前仅支持NVIDIA-T4。 GPU规格(GB) 支持1~16GB。 图1 启用GPU 父主题: 创建GPU函数
在使用converter_lite工具转换时,默认是将所有算子的精度转换为fp16。如果想要将固定shape的模型精度修改为fp32进行转换,需要在配置文件中指定算子的精度模式为precision_mode,配置文件的写法如下(更多精度模式请参考precision_mode): # text_encoder
集群有4块GPU卡,TFJob1和TFJob2作业各自有4个Worker,TFJob1和TFJob2各自分配到2个GPU。但是TFJob1和TFJob2均需要4块GPU卡才能运行起来。这样TFJob1和TFJob2处于互相等待对方释放资源,这种死锁情况造成了GPU资源的浪费。 亲和调度问题
基于GPU监控指标的工作负载弹性伸缩配置 集群中包含GPU节点时,可通过GPU指标查看节点GPU资源的使用情况,例如GPU利用率、显存使用量等。在获取GPU监控指标后,用户可根据应用的GPU指标配置弹性伸缩策略,在业务波动时自适应调整应用的副本数量。 前提条件 目标集群已创建,且
计算公式:节点上容器显存使用总量/节点上显存总量 GPU卡-显存使用量 字节 显卡上容器显存使用总量 GPU卡-算力使用率 百分比 每张GPU卡的算力使用率 计算公式:显卡上容器算力使用总量/显卡的算力总量 GPU卡-温度 摄氏度 每张GPU卡的温度 GPU-显存频率 赫兹 每张GPU卡的显存频率 GPU卡-PCle带宽
管理GPU加速型ECS的GPU驱动 GPU驱动概述 Tesla驱动及CUDA工具包获取方式 (推荐)自动安装GPU加速型ECS的GPU驱动(Linux) (推荐)自动安装GPU加速型ECS的GPU驱动(Windows) 手动安装GPU加速型ECS的GRID驱动 手动安装GPU加速型ECS的Tesla驱动
使用Nvidia-smi工具 为了支持查看GPU使用情况的场景,需要在镜像中注入nvidia-smi工具,根据购买的专属节点GPU驱动版本选择不同的nvidia-smi二进制文件。 nvidia-smi获取方式。 该二进制文件可以在nvidia官网,根据CUDA Toolkit版
如何查看Pod是否使用CPU绑核? 节点关机后Pod不重新调度 如何避免非GPU/NPU负载调度到GPU/NPU节点? 为什么Pod调度不到某个节点上? 修改kubelet参数导致已驱逐的Pod被重新调度 根据GPU/NPU卡信息定位使用该卡的Pod 节点标签更新导致的Pod容器退出问题
GPU实例故障分类列表 GPU实例故障的分类列表如表1所示。 表1 GPU实例故障分类列表 是否可恢复故障 故障类型 相关文档 可恢复故障,可按照相关文档自行恢复 镜像配置问题 如何处理Nouveau驱动未禁用导致的问题 ECC错误 如何处理ECC ERROR:存在待隔离页问题 内核升级问题
如何避免非GPU/NPU负载调度到GPU/NPU节点? 问题现象 当集群中存在GPU/NPU节点和普通节点混合使用的场景时,普通工作负载也可以调度到GPU/NPU节点上,可能出现GPU/NPU资源未充分利用的情况。 问题原因 由于GPU/NPU节点同样提供CPU、内存资源,在一般
GPU设备检查 功能 检查节点是否存在gpu设备,gpu驱动是否安装且运行正常。 语法 edgectl check gpu 参数说明 无 使用示例 检查节点GPU设备: edgectl check gpu 检查成功返回结果: +-----------------------+ |