检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
首先企业A要在“数据选择”页面选择双方发布的数据集,已选择的数据集会出现在右侧,所选的数据集会用于后续的步骤。 父主题: 使用TICS可信联邦学习进行联邦建模
等待训练完成后就可以看到训练出的模型指标。 模型训练完成后如果指标不理想可以重复调整7、8两步的所选特征和超参数,直至训练出满意的模型。 父主题: 使用TICS可信联邦学习进行联邦建模
择双方的样本对齐字段,并单击“对齐”按钮执行样本对齐。执行完成后会在下方展示对齐后的数据量及对齐结果路径。 父主题: 使用TICS可信联邦学习进行联邦建模
根据计算得出的iv值,企业A调整了训练使用的特征,没有选用双方提供的特征全集,去掉了部分iv值较低的特征,减少了无用的计算消耗。 父主题: 使用TICS可信联邦学习进行联邦建模
参与方不同的数据集即可发起模型评估。 至此使用可信联邦学习进行联邦建模的过程已经完成,企业A已经训练出了一个符合自己要求的算法模型,后续文档会介绍如何使用已有的算法模型对新的数据进行预测。 父主题: 使用TICS可信联邦学习进行联邦建模
基于多方安全计算功能准备好合适的数据,本文主要介绍双方对已有的数据进行样本对齐、特征筛选和联邦建模,并对产生的模型进行评估。 父主题: 使用TICS可信联邦学习进行联邦建模
其中为了保证数据安全,企业A和大数据厂商B通过讨论决定使用hash过后的手机号作为已有数据的唯一标识id字段,并将唯一标识作为数据对齐的依据。 父主题: 使用TICS可信联邦学习进行联邦建模
大数据厂商B的数据集如下: 创建数据集后单击“发布”按钮即可将数据的元数据信息发布到tics空间侧,供其他合作方参考。 父主题: 使用TICS可信联邦学习进行联邦建模
创建纵向联邦学习作业 2021年3月 序号 功能名称 功能描述 阶段 相关文档 1 纵向联邦学习 纵向联邦机器学习,适用于参与者训练样本ID重叠较多,而数据特征重叠较少的情况,联合多个参与者的共同样本的不同数据特征进行联邦机器学习,联合建模。 公测 创建纵向联邦学习作业 2 联盟和计算节点支持自助升级
护数据使用方的数据查询和搜索条件,避免因查询和搜索请求造成的数据泄露。 可信联邦学习 可信联邦学习是可信智能计算服务提供的在保障用户数据安全的前提下,利用多方数据实现的联合建模,曾经被称为联邦机器学习。 联邦预测作业 联邦预测作业在保障用户数据安全的前提下,利用多方数据和模型实现样本联合预测。
据源注册、隐私策略(敏感,非敏感,脱敏)的设定、元数据的发布等,为数据源计算节点提供全生命周期的可靠性监控、运维管理。 可信联邦学习 对接主流深度学习框架实现横向和纵向的联邦训练,支持基于安全密码学(如不经意传输、差分隐私等)的多方样本对齐和训练模型的保护。 数据使用监管 为数据
查询执行结果 功能介绍 查询学习类型作业执行结果 调用方法 请参见如何调用API。 URI GET /v1/{project_id}/leagues/{league_id}/job-instances/{instance_id}/result 表1 路径参数 参数 是否必选 参数类型
String 作业名称,最大长度128 job_type String 作业类型。作业类型:SQL.联合SQL分析,HFL.横向联邦学习,VFL.纵向联邦学习,PREDICT.预测 creatorName String 创建人名称,最大值128 create_time String 创建时间。
部署计算节点 同一个空间中的用户,在使用可信计算服务时(多方安全计算和可信联邦学习),需要部署计算节点,将数据上传,作为可信计算服务的输入,通过执行多方安全计算和可信联邦学习作业后,最终拿到结果。 计算节点以容器的形式部署,支持云容器引擎(CCE,Cloud Container
部署计算节点 同一个空间中的用户,在使用可信计算服务时(多方安全计算和可信联邦学习),需要部署计算节点,将数据上传,作为可信计算服务的输入,通过执行多方安全计算和可信联邦学习作业后,最终拿到结果。 计算节点以容器的形式部署,支持云容器引擎(CCE,Cloud Container
管理文件 文件管理是可信智能计算服务提供的一项管理联邦学习模型文件的功能。通过文件管理,参与方无需通过登录后台手动导入模型文件,而是直接将模型文件上传到数据目录进行管理。 使用文件管理功能后,创建联邦学习作业时用户可以便捷地选择自己以前上传的执行脚本、训练模型、数据文件、权重参数
job_partner String 参与方信息,最大长度128 is_single_predict Boolean 单方还是双方预测 metrics String 联邦学习模型评估指标 请求示例 查询作业的历史实例列表 get https://x.x.x.x:12345/v1/{pro
job_partner String 参与方信息,最大长度128 is_single_predict Boolean 单方还是双方预测 metrics String 联邦学习模型评估指标 请求示例 查询训练作业下的成功模型 get https://x.x.x.x:12345/v1/{pr
创建或更新数据集 功能介绍 本接口用于创建或更新数据集。 - 根据是否存在id字段,判断是创建还是更新数据集 - 返回数据集ID 调用方法 请参见如何调用API。 URI POST /v1/agents/datasets 请求参数 表1 请求Header参数 参数 是否必选
备注信息 data_id String 数据集id data_type String 字段类型 fl_label_type String 学习数据集标签类型。UNIQUE_ID唯一标识,FEATURE特征,LABEL标签,FILTER过滤字段 is_discrete Boolean