检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
常见错误原因和解决方法 显存溢出错误 网卡名称错误 保存ckpt时超时报错 父主题: 主流开源大模型基于Standard+OBS适配PyTorch NPU训练指导(6.3.907)
常见错误原因和解决方法 显存溢出错误 网卡名称错误 保存ckpt时超时报错 父主题: 主流开源大模型基于Standard+OBS+SFS适配PyTorch NPU训练指导(6.3.907)
常见错误原因和解决方法 显存溢出错误 网卡名称错误 工作负载Pod异常 父主题: 主流开源大模型基于Lite Cluster适配ModelLink PyTorch NPU训练指导(6.3.910)
常见错误原因和解决方法 显存溢出错误 网卡名称错误 工作负载Pod异常 mc2融合算子报错 父主题: 主流开源大模型基于Lite Cluster适配ModelLink PyTorch NPU训练指导(6.3.912)
常见错误原因和解决方法 显存溢出错误 网卡名称错误 保存ckpt时超时报错 Git下载代码时报错 父主题: 主流开源大模型基于Lite Server适配ModelLink PyTorch NPU训练指导(6.3.911)
常见错误原因和解决方法 显存溢出错误 网卡名称错误 保存ckpt时超时报错 Git下载代码时报错 父主题: 主流开源大模型基于Lite Server适配ModelLink PyTorch NPU训练指导(6.3.908)
常见错误原因和解决方法 显存溢出错误 网卡名称错误 保存ckpt时超时报错 Git下载代码时报错 父主题: 主流开源大模型基于Lite Server适配ModelLink PyTorch NPU训练指导(6.3.909)
百分比(Percent) 0~100% GPU显存使用率 该指标用于统计测量对象已使用的显存占显存容量的百分比。 百分比(Percent) 0~100% NPU显卡使用率 该指标用于统计测量对象已使用的显卡占显卡容量的百分比。 百分比(Percent) 0~100% NPU显存使用率 该指标用于统计测量对象已使用的显存占显存容量的百分比。
ne,举例:参数可以设置为0.0.0.0。 --port:服务部署的端口。 --gpu-memory-utilization:NPU使用的显存比例,复用原vLLM的入参名称,默认为0.9。 --trust-remote-code:是否相信远程代码。 --distributed-e
qwen-14b 24576 24576 3 llama2-13b 24576 24576 说明:机器型号规格以卡数*显存大小为单位,如4*64GB代表4张64GB显存的NPU卡。 父主题: 主流开源大模型基于LIte Server适配PyTorch NPU推理指导(6.3.905)
cpuUsage:CPU使用率 memUsage:物理内存使用率 gpuUtil:GPU使用率 gpuMemUsage:显存使用率 npuUtil:NPU使用率 npuMemUsage:NPU显存使用率 value Array of doubles 运行指标对应数值,1min统计一个平均值。 请求示例
cpuUsage(CPU使用率)、memUsage(物理内存使用率)、gpuUtil(GPU使用率)、gpuMemUsage(显存使用率)、npuUtil(NPU使用率)、npuMemUsage(NPU显存使用率)。 value Array of numbers 运行指标对应数值,1min统计一个平均值。
负责reducer的GPU更新模型参数后分发到不同的GPU,因此有较大的通信开销。 GPU负载不均衡:负责reducer的GPU需要负责汇总输出、计算损失和更新权重,因此显存和使用率相比其他GPU都会更高。 DistributedDataParallel进行多机多卡训练的优缺点 通信更快:相比于DP,通信速度更快
有优势,能够避免在训练过程中数值的上溢或下溢,从而提供更好的稳定性和可靠性,在大模型训练和推理以及权重存储方面更受欢迎。 FP16:用于深度学习训练和推理过程中,可以加速计算并减少内存的占用,对模型准确性的影响在大多数情况下较小。与BF16相比在处理非常大或非常小的数值时遇到困难,导致数值的精度损失。
有优势,能够避免在训练过程中数值的上溢或下溢,从而提供更好的稳定性和可靠性,在大模型训练和推理以及权重存储方面更受欢迎。 FP16:用于深度学习训练和推理过程中,可以加速计算并减少内存的占用,对模型准确性的影响在大多数情况下较小。与BF16相比在处理非常大或非常小的数值时遇到困难,导致数值的精度损失。
MEM:物理内存使用率(memUsage)百分比(Percent)。 GPU:GPU使用率(gpuUtil)百分比(Percent)。 GPU_MEM:显存使用率(gpuMemUsage)百分比(Percent)。 父主题: Standard模型训练
有优势,能够避免在训练过程中数值的上溢或下溢,从而提供更好的稳定性和可靠性,在大模型训练和推理以及权重存储方面更受欢迎。 FP16:用于深度学习训练和推理过程中,可以加速计算并减少内存的占用,对模型准确性的影响在大多数情况下较小。与BF16相比在处理非常大或非常小的数值时遇到困难,导致数值的精度损失。
有优势,能够避免在训练过程中数值的上溢或下溢,从而提供更好的稳定性和可靠性,在大模型训练和推理以及权重存储方面更受欢迎。 FP16:用于深度学习训练和推理过程中,可以加速计算并减少内存的占用,对模型准确性的影响在大多数情况下较小。与BF16相比在处理非常大或非常小的数值时遇到困难,导致数值的精度损失。
MoXing是ModelArts自研的组件,是一种轻型的分布式框架,构建于TensorFlow、PyTorch、MXNet、MindSpore等深度学习引擎之上,使得这些计算引擎分布式性能更高,同时易用性更好。MoXing包含很多组件,其中MoXing Framework模块是一个基础公
Cache可以复用,那么就可以减少一部分前缀token的KV Cache计算时间,从而减少prefill的时间。 更高效的显存使用:当正在处理的请求相互之间存在公共前缀时,公共前缀部分的KV Cache可以共用,不必重复占用多份显存。 约束限制 该特性不能和Chunked-prefill、KV Cache量化特性同时使用。