检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
Open-Clip基于Lite Server适配PyTorch NPU训练指导 Open-Clip广泛应用于AIGC和多模态视频编码器的训练。 方案概览 本方案介绍了在ModelArts的Lite Server上使用昇腾NPU计算资源开展Open-clip训练的详细过程。完成本方
训练作业卡死检测 什么是训练作业卡死检测 训练作业在运行中可能会因为某些未知原因导致作业卡死,如果不能及时发现,就会导致无法及时释放资源,从而造成极大的资源浪费。为了节省训练资源成本,提高使用体验,ModelArts提供了卡死检测功能,能自动识别作业是否卡死,并在日志详情界面上展
(机内通信)带宽相对较小,可以尝试增大batchSize或者梯度累积参数,如果配置了ZeRO3则推荐使用ZeRO1或者ZeRO2(如果内存够)。 图22 通信小包分析 Communication Retransmission Analysis 单次通信重传将会耗时4秒以上,会导致
查询资源规格列表 功能介绍 查询资源规格列表。 调试 您可以在API Explorer中调试该接口,支持自动认证鉴权。API Explorer可以自动生成SDK代码示例,并提供SDK代码示例调试功能。 URI GET /v1/{project_id}/resourceflavors
准备镜像 准备大模型推理适用的容器镜像,包括获取镜像地址,了解镜像中包含的各类固件版本,配置Standard物理机环境操作。 镜像版本 本教程中用到基础镜像地址和配套版本关系如下表所示,请提前了解。 表1 基础容器镜像地址 镜像用途 镜像地址 配套版本 基础镜像 swr.cn-southwest-2
从0制作自定义镜像用于创建训练作业(PyTorch+CPU/GPU) 本章节介绍如何从0到1制作镜像,并使用该镜像在ModelArts平台上进行训练。镜像中使用的AI引擎是PyTorch,训练使用的资源是CPU或GPU。 本实践教程仅适用于新版训练作业。 场景描述 本示例使用Linux
示例:从 0 到 1 制作自定义镜像并用于训练(PyTorch+CPU/GPU) 本章节介绍如何从0到1制作镜像,并使用该镜像在ModelArts平台上进行训练。镜像中使用的AI引擎是PyTorch,训练使用的资源是CPU或GPU。 本实践教程仅适用于新版训练作业。 场景描述 本示例使用Linux
Open-Sora1.2基于Lite Server适配PyTorch NPU训练推理指导(6.3.910) 本文档主要介绍如何在ModelArts Lite Server上,使用PyTorch_npu+华为自研Ascend Snt9B硬件,完成Open-Sora 1.2 训练和推理。
Wav2Lip推理基于Lite Server适配PyTorch NPU推理指导(6.3.907) Wav2Lip是一种基于对抗生成网络的由语音驱动的人脸说话视频生成模型。主要应用于数字人场景。不仅可以基于静态图像来输出与目标语音匹配的唇形同步视频,还可以直接将动态的视频进行唇形转
准备镜像 准备大模型推理适用的容器镜像,包括获取镜像地址,了解镜像中包含的各类固件版本,配置Standard物理机环境操作。 镜像版本 本教程中用到基础镜像地址和配套版本关系如下表所示,请提前了解。 表1 基础容器镜像地址 镜像用途 镜像地址 配套版本 基础镜像 swr.cn-southwest-2
查看Notebook实例事件 在Notebook的整个生命周期,包括实例的创建、启动、停止、规格变更等关键操作以及实例的运行状态等在后台都有记录,用户可以在Notebook实例详情页中查看具体的事件,通过实例的事件,从而看到实例的运行或者异常等状态详情。在右侧可以手动刷新事件,也
Qwen-VL基于Lite Server适配PyTorch NPU的Finetune训练指导(6.3.912) Qwen-VL是规模视觉语言模型,可以以图像、文本、检测框作为输入,并以文本和检测框作为输出。具有强大的性能、多语言对话、多图交错对话、支持中文开放域定位、细粒度识别和理解等特点。
FlUX.1基于Lite Server适配PyTorch NPU推理指导(6.3.912) Flux是一种基于扩散过程的图像生成模型,应用于文生图场景,能够帮助用户生成图像。官方提供了三个版本:FLUX.1-pro、FLUX.1-dev和FLUX.1-schnell。 方案概览 本方案介绍了在ModelArts
从0制作自定义镜像用于创建训练作业(Tensorflow+GPU) 本章节介绍如何从0到1制作镜像,并使用该镜像在ModelArts平台上进行训练。镜像中使用的AI引擎是Tensorflow,训练使用的资源是GPU。 本实践教程仅适用于新版训练作业。 场景描述 本示例使用Linux
查看训练作业日志 训练日志定义 训练日志用于记录训练作业运行过程和异常信息,为快速定位作业运行中出现的问题提供详细信息。用户代码中的标准输出、标准错误信息会在训练日志中呈现。在ModelArts中训练作业遇到问题时,可首先查看日志,多数场景下的问题可以通过日志报错信息直接定位。
FLUX.1基于DevSever适配PyTorch NPU Finetune&Lora训练指导(6.3.911) Flux是一种基于扩散过程的图像生成模型,应用于文生图场景,能够帮助用户生成图像。 方案概览 本方案介绍了在ModelArts Lite Server上使用昇腾计算资源Ascend
advisor调优总体步骤 基于ModelArts performance advisor插件的昇腾PyTorch性能调优主要分为以下步骤: 准确采集性能劣化时刻的profiling数据。 存储profiling数据。 创建advisor分析环境。 操作步骤 明确性能问题类型,准
Open-Sora-Plan1.0基于Lite Server适配PyTorch NPU训练推理指导(6.3.907) 本文档主要介绍如何在ModelArts Lite Server上,使用PyTorch_npu+华为自研Ascend Snt9B硬件,完成Open-Sora-Plan1
Llama 3.2-Vision基于Lite Server适配Pytorch NPU训练微调指导(6.3.912) 方案概览 本方案介绍了在ModelArts Lite Server上使用昇腾计算资源Ascend Snt9B开展Llama 3.2-Vision-11B模型的训练过程,包括finetune
Yolov8基于Lite Server适配MindSpore Lite推理指导(6.3.909) 方案概览 本方案介绍了在ModelArts的Lite Server上使用昇腾Atlas 300I Duo推理卡计算资源,部署Yolov8 Detection模型推理的详细过程。 本方案目前仅适用于企业客户。