检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
于加速深度学习训练。通过使用DeepSpeed,可以实现如混合精度训练、ZeRO内存优化等高级特性,以提高训练效率和性能 stage sft 表示当前的训练阶段。可选择值:sft、rm、ppo、dpo。 sft代表指令监督微调; rm代表奖励模型训练; ppo代表PPO训练; dpo代表DPO训练。
Finetune训练 本章节介绍SDXL&SD 1.5模型的Finetune训练过程。Finetune是指在已经训练好的模型基础上,使用新的数据集进行微调(fine-tuning)以优化模型性能。 启动SD1.5 Finetune训练服务 使用ma-user用户执行如下命令运行训练脚本。 sh
-a -G root ma-user 其他现象,可以在已有的训练故障案例查找。 建议与总结 用户使用自定义镜像训练作业时,建议按照训练作业自定义镜像规范制作镜像。文档中同时提供了端到端的示例供用户参考。 父主题: 训练作业运行失败
训练的数据集预处理说明 以 llama2-13b 举例,运行:0_pl_pretrain_13b.sh 训练脚本后,脚本检查是否已经完成数据集预处理的过程。 若已完成数据集预处理,则直接执行预训练任务。若未进行数据集预处理,则会自动执行 scripts/llama2/1_preprocess_data
训练的数据集预处理说明 以 llama2-13b 举例,运行:0_pl_pretrain_13b.sh 训练脚本后,脚本检查是否已经完成数据集预处理的过程。 如果已完成数据集预处理,则直接执行预训练任务。如果未进行数据集预处理,则会自动执行 scripts/llama2/1_preprocess_data
统将自动修复异常或隔离节点,并重启训练作业,提高训练成功率。为了避免丢失训练进度、浪费算力。此功能已适配断点续训练。 图2 开启故障重启 断点续训练是通过checkpoint机制实现。checkpoint机制是在模型训练的过程中,不断地保存训练结果(包括但不限于EPOCH、模型权
统将自动修复异常或隔离节点,并重启训练作业,提高训练成功率。为了避免丢失训练进度、浪费算力。此功能已适配断点续训练。 图2 开启故障重启 断点续训练是通过checkpoint机制实现。checkpoint机制是在模型训练的过程中,不断地保存训练结果(包括但不限于EPOCH、模型权
统将自动修复异常或隔离节点,并重启训练作业,提高训练成功率。为了避免丢失训练进度、浪费算力。此功能已适配断点续训练。 图2 开启故障重启 断点续训练是通过checkpoint机制实现。checkpoint机制是在模型训练的过程中,不断地保存训练结果(包括但不限于EPOCH、模型权
统将自动修复异常或隔离节点,并重启训练作业,提高训练成功率。为了避免丢失训练进度、浪费算力。此功能已适配断点续训练。 图2 开启故障重启 断点续训练是通过checkpoint机制实现。checkpoint机制是在模型训练的过程中,不断地保存训练结果(包括但不限于EPOCH、模型权
训练benchmark工具 工具介绍及准备工作 训练性能测试 训练精度测试 父主题: 主流开源大模型基于DevServer适配LlamaFactory PyTorch NPU训练指导(6.3.910)
训练中的权重转换说明 以 llama2-13b 举例,运行 0_pl_pretrain_13b.sh 脚本。脚本同样还会检查是否已经完成权重转换的过程。 若已完成权重转换,则直接执行预训练任务。若未进行权重转换,则会自动执行 scripts/llama2/2_convert_mg_hf
训练tokenizer文件说明 在训练开始前,需要针对模型的tokenizer文件进行修改,不同模型的tokenizer文件修改内容如下,您可在创建的Notebook中对tokenizer文件进行编辑。 LLama2模型 在当前的软件版本中,由于transformers的版本过高(transformers==4
训练中的权重转换说明 以 llama2-13b 举例,运行 0_pl_pretrain_13b.sh 脚本。脚本同样还会检查是否已经完成权重转换的过程。 若已完成权重转换,则直接执行预训练任务。若未进行权重转换,则会自动执行 scripts/llama2/2_convert_mg_hf
训练tokenizer文件说明 在训练开始前,需要针对模型的tokenizer文件进行修改,不同模型的tokenizer文件修改内容如下,您可在创建的Notebook中对tokenizer文件进行编辑。 LLama2模型 在当前的软件版本中,由于transformers的版本过高(transformers==4
GBS 512 表示训练中所有机器一个step所处理的样本量。影响每一次训练迭代的时长。 TP 8 表示张量并行。 PP 1 表示流水线并行。一般此值与训练节点数相等,与权重转换时设置的值相等。 LR 2.5e-5 学习率设置。 MIN_LR 2.5e-6 最小学习率设置。 SEQ_LEN
修改训练作业优先级 使用专属资源池训练作业时,支持在创建训练作业时设置任务优先级,也支持作业在长时间处于“等待中”的状态时调整优先级。如通过调整作业优先级可以减少作业的排队时长。 什么是训练作业优先级 在用户运行训练作业过程中,需要对训练作业做优先级划分。比如有一些任务是低优先级
GBS 512 表示训练中所有机器一个step所处理的样本量。影响每一次训练迭代的时长。 TP 8 表示张量并行。 PP 1 表示流水线并行。一般此值与训练节点数相等,与权重转换时设置的值相等。 LR 2.5e-5 学习率设置。 MIN_LR 2.5e-6 最小学习率设置。 SEQ_LEN
训练专属预置镜像列表 ModelArts平台提供了Tensorflow,PyTorch,MindSpore等常用深度学习任务的基础镜像,镜像里已经安装好运行任务所需软件。当基础镜像里的软件无法满足您的程序运行需求时,您可以基于这些基础镜像制作一个新的镜像并进行训练。 训练基础镜像列表
分布式训练功能介绍 ModelArts提供了如下能力: 丰富的官方预置镜像,满足用户的需求。 支持基于预置镜像自定义制作专属开发环境,并保存使用。 丰富的教程,帮助用户快速适配分布式训练,使用分布式训练极大减少训练时间。 分布式训练调测的能力,可在PyCharm/VSCode/J
删除训练作业 功能介绍 删除训练作业。 此接口为异步接口,作业状态请通过查询训练作业列表和查询训练作业版本详情接口获取。 URI DELETE /v1/{project_id}/training-jobs/{job_id} 参数说明如表1所示。 表1 参数说明 参数 是否必选 参数类型