检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
该示例的主要功能是基于Tensorflow的分布式架构,利用卷积神经网络(CNN)中的ResNet50模型对随机生成的图像进行训练,每次训练32张图像(batch_size),共训练100次(step),记录每次训练过程中的性能(image/sec)。 apiVersion: "kubeflow.org/v1"
本机网络提供传输效率,缩短训练时间。 Volcano批量调度系统:加速AI计算的利器 Volcano是一款构建于Kubernetes之上的增强型高性能计算任务批量处理系统。作为一个面向高性能计算场景的平台,它弥补了Kubernetes在机器学习、深度学习、HPC、大数据计算等场景
旨在为数据科学家、机器学习工程师、系统运维人员提供面向机器学习业务的敏捷部署、开发、训练、发布和管理平台。它利用了云原生技术的优势,让用户更快速、方便地部署、使用和管理当前最流行的机器学习软件。 目前Kubeflow 1.0版本已经发布,包含开发、构建、训练、部署四个环节,可全面
Volcano调度器 插件简介 Volcano是一个基于Kubernetes的批处理平台,提供了机器学习、深度学习、生物信息学、基因组学及其他大数据应用所需要而Kubernetes当前缺失的一系列特性。 Volcano提供了高性能任务调度引擎、高性能异构芯片管理、高性能任务运行管
群增加节点,从而保证业务能够正常提供服务。 弹性伸缩在CCE上的使用场景非常广泛,典型的场景包含在线业务弹性、大规模计算训练、深度学习GPU或共享GPU的训练与推理、定时周期性负载变化等。 CCE弹性伸缩 CCE的弹性伸缩能力分为如下两个维度: 工作负载弹性伸缩:即调度层弹性,主
nSet的操作步骤详情请参见创建守护进程集(DaemonSet)。 图1 创建守护进程集 建议您使用日常测试的镜像作为基础镜像。您可参照如下YAML部署最小应用Pod。 该测试YAML将DaemonSet部署在default命名空间下,使用ngxin:perl为基础镜像,申请10m
Volcano调度器 插件介绍 Volcano 是一个基于 Kubernetes 的批处理平台,提供了机器学习、深度学习、生物信息学、基因组学及其他大数据应用所需要的而 Kubernetes 当下缺失的一系列特性。 字段说明 表1 参数描述 参数 是否必选 参数类型 描述 basic
GPU驱动的安装。 解决方案 由于当前GPU插件的驱动配置由您自行配置,需要您验证两者的兼容性。建议您在测试环境验证安装升级目标版本的GPU插件,并配置当前GPU驱动后,测试创建节点是否正常使用。 您可以执行以下步骤确认GPU插件的升级目标版本与当前驱动配置。 登录CCE控制台,前往“插件中心”处查看CCE
方便灵活地进行定制化开发。 应用场景4:高精度资源调度 Volcano 在支持AI,大数据等作业的时候提供了高精度的资源调度策略,例如在深度学习场景下计算效率非常重要。以TensorFlow计算为例,配置“ps”和“worker”之间的亲和性,以及“ps”与“ps”之间的反亲和性
selector中不包含version信息 app: nginx type: LoadBalancer # 类型为LoadBalancer 执行以下命令,测试访问。 for i in {1..10}; do curl <EXTERNAL_IP>; done; 其中,<EXTERNAL_IP>为ELB实例的IP地址。
Volcano调度概述 Volcano是一个基于Kubernetes的批处理平台,提供了机器学习、深度学习、生物信息学、基因组学及其他大数据应用所需要而Kubernetes当前缺失的一系列特性,提供了高性能任务调度引擎、高性能异构芯片管理、高性能任务运行管理等通用计算能力。 Volcano
使用ASM实现灰度发布和蓝绿发布 应用服务网格(Application Service Mesh,简称ASM)是基于开源Istio推出的服务网格平台,它深度、无缝对接了企业级Kubernetes集群服务云容器引擎(CCE),在易用性、可靠性、可视化等方面进行了一系列增强,可为客户提供开箱即用的上手体验。
nothing”的调度需求,避免Pod的任意调度导致集群资源的浪费,主要应用于AI、大数据等多任务协作场景。启用该能力后,可以解决分布式训练任务之间的资源忙等待和死锁等痛点问题,大幅度提升整体训练性能。 前提条件 已创建v1.19及以上版本的集群,详情请参见购买Standard/Turbo集群。 已安装V
滑下线旧版本。 注解说明 Nginx Ingress支持通过配置注解(Annotations)来实现不同场景下的发布和测试,可以满足灰度发布、蓝绿发布、A/B测试等业务场景。具体实现过程如下:为服务创建两个Ingress,一个为常规Ingress,另一个为带nginx.ingress
在CCE集群中部署使用Kubeflow Kubeflow部署 Tensorflow训练 使用Kubeflow和Volcano实现典型AI训练任务 父主题: 批量计算
DRF(Dominant Resource Fairness)是主资源公平调度策略,应用于大批量提交AI训练和大数据作业的场景,可增强集群业务的吞吐量,整体缩短业务执行时间,提高训练性能。 前提条件 已创建v1.19及以上版本的集群,详情请参见购买Standard/Turbo集群。
但偶尔需要提高计算性能完成工作负载的场景,可用于轻量级Web服务器、开发、测试环境以及中低性能数据库等场景。 GPU加速型:提供优秀的浮点计算能力,从容应对高实时、高并发的海量计算场景。P系列适合于深度学习,科学计算,CAE等;G系列适合于3D动画渲染,CAD等。仅支持1.11及以上版本集群添加GPU加速型节点。
发布概述 应用现状 应用程序升级面临最大挑战是新旧业务切换,将软件从测试的最后阶段带到生产环境,同时要保证系统不间断提供服务。如果直接将某版本上线发布给全部用户,一旦遇到线上事故(或BUG),对用户的影响极大,解决问题周期较长,甚至有时不得不回滚到前一版本,严重影响了用户体验。 解决方案
云原生监控插件兼容自建Prometheus 云原生监控插件兼容模式 若您已自建Prometheus,且您的Prometheus基于开源,未做深度定制、未与您的监控系统深度整合,建议您卸载自建Prometheus并直接使用云原生监控插件对您的集群进行监控,无需开启“兼容模式”。 卸载您自建的Pro
修改CCE集群配置 操作场景 CCE支持对集群配置参数进行管理,通过该功能您可以对核心组件进行深度配置。 操作步骤 登录CCE控制台,在左侧导航栏中选择“集群管理”。 找到目标集群,查看集群的更多操作,并选择“配置管理”。 图1 配置管理 在侧边栏滑出的“配置管理”窗口中,根据业